Download or read book Introduction to Probability and Stochastic Processes with Applications written by Liliana Blanco Castañeda and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.
Download or read book An Introduction to Probability and Stochastic Processes written by Marc A. Berger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possible without recourse to other branches of mathematics and in a notation that is as "probabilistic" as possible. Thus, for example, the asymptotics of pn for large n, where P is a stochastic matrix, is developed in Section V by using passage probabilities and hitting times rather than, say, pulling in Perron Frobenius theory or spectral analysis. Similarly in Section II the joint normal distribution is studied through conditional expectation rather than quadratic forms. The second principle I have tried to follow is to only prove results in their simple forms and to try to eliminate any minor technical com putations from proofs, so as to expose the most important steps. Steps in proofs or derivations that involve algebra or basic calculus are not shown; only steps involving, say, the use of independence or a dominated convergence argument or an assumptjon in a theorem are displayed. For example, in proving inversion formulas for characteristic functions I omit steps involving evaluation of basic trigonometric integrals and display details only where use is made of Fubini's Theorem or the Dominated Convergence Theorem.
Download or read book An Introduction to Probability and Stochastic Processes written by James L. Melsa and published by Courier Corporation. This book was released on 2013-01-01 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.
Download or read book Introduction to Probability Theory and Stochastic Processes written by John Chiasson and published by John Wiley & Sons. This book was released on 2013-04-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique approach to stochastic processes that connects the mathematical formulation of random processes to their use in applications This book presents an innovative approach to teaching probability theory and stochastic processes based on the binary expansion of the unit interval. Departing from standard pedagogy, it uses the binary expansion of the unit interval to explicitly construct an infinite sequence of independent random variables (of any given distribution) on a single probability space. This construction then provides the framework to understand the mathematical formulation of probability theory for its use in applications. Features include: The theory is presented first for countable sample spaces (Chapters 1-3) and then for uncountable sample spaces (Chapters 4-18) Coverage of the explicit construction of i.i.d. random variables on a single probability space to explain why it is the distribution function rather than the functional form of random variables that matters when it comes to modeling random phenomena Explicit construction of continuous random variables to facilitate the "digestion" of random variables, i.e., how they are used in contrast to how they are defined Explicit construction of continuous random variables to facilitate the two views of expectation: as integration over the underlying probability space (abstract view) or as integration using the density function (usual view) A discussion of the connections between Bernoulli, geometric, and Poisson processes Incorporation of the Johnson-Nyquist noise model and an explanation of why (and when) it is valid to use a delta function to model its autocovariance Comprehensive, astute, and practical, Introduction to Probability Theory and Stochastic Processes is a clear presentation of essential topics for those studying communications, control, machine learning, digital signal processing, computer networks, pattern recognition, image processing, and coding theory.
Download or read book Elementary Probability Theory with Stochastic Processes written by K. L. Chung and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an elementary introduction to probability theory and its applications. The emphasis is on essential probabilistic reasoning, amply motivated, explained and illustrated with a large number of carefully selected samples. The fourth edition adds material related to mathematical finance, as well as expansions on stable laws and martingales.
Download or read book Probability Theory and Stochastic Processes written by Pierre Brémaud and published by Springer Nature. This book was released on 2020-04-07 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.
Download or read book Introduction To Stochastic Processes written by Mu-fa Chen and published by World Scientific. This book was released on 2021-05-25 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.
Download or read book Probability Theory and Stochastic Processes with Applications Second Edition written by Oliver Knill and published by World Scientific Publishing Company. This book was released on 2017-01-31 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers.
Download or read book Probability and Stochastic Processes written by Roy D. Yates and published by John Wiley & Sons. This book was released on 2014-01-28 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first five chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester.
Download or read book Introduction to Stochastic Processes with R written by Robert P. Dobrow and published by John Wiley & Sons. This book was released on 2016-03-07 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
Download or read book Elementary Probability Theory written by Kai Lai Chung and published by Springer Science & Business Media. This book was released on 2012-11-12 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to probability theory and its applications. The emphasis is on essential probabilistic reasoning, which is illustrated with a large number of samples. The fourth edition adds material related to mathematical finance as well as expansions on stable laws and martingales. From the reviews: "Almost thirty years after its first edition, this charming book continues to be an excellent text for teaching and for self study." -- STATISTICAL PAPERS
Download or read book Introduction to Probability written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2008-07-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Download or read book Probability Stochastic Processes and Queueing Theory written by Randolph Nelson and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: We will occasionally footnote a portion of text with a "**,, to indicate Notes on the that this portion can be initially bypassed. The reasons for bypassing a Text portion of the text include: the subject is a special topic that will not be referenced later, the material can be skipped on first reading, or the level of mathematics is higher than the rest of the text. In cases where a topic is self-contained, we opt to collect the material into an appendix that can be read by students at their leisure. The material in the text cannot be fully assimilated until one makes it Notes on "their own" by applying the material to specific problems. Self-discovery Problems is the best teacher and although they are no substitute for an inquiring mind, problems that explore the subject from different viewpoints can often help the student to think about the material in a uniquely per sonal way. With this in mind, we have made problems an integral part of this work and have attempted to make them interesting as well as informative.
Download or read book Introduction to Probability Models written by Sheldon M. Ross and published by Academic Press. This book was released on 2006-12-11 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics
Download or read book A First Look At Stochastic Processes written by Jeffrey S Rosenthal and published by World Scientific. This book was released on 2019-09-26 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the theory of stochastic processes, that is, randomness which proceeds in time. Using concrete examples like repeated gambling and jumping frogs, it presents fundamental mathematical results through simple, clear, logical theorems and examples. It covers in detail such essential material as Markov chain recurrence criteria, the Markov chain convergence theorem, and optional stopping theorems for martingales. The final chapter provides a brief introduction to Brownian motion, Markov processes in continuous time and space, Poisson processes, and renewal theory.Interspersed throughout are applications to such topics as gambler's ruin probabilities, random walks on graphs, sequence waiting times, branching processes, stock option pricing, and Markov Chain Monte Carlo (MCMC) algorithms.The focus is always on making the theory as well-motivated and accessible as possible, to allow students and readers to learn this fascinating subject as easily and painlessly as possible.
Download or read book Introduction to Probability Models written by Sheldon M. Ross and published by Elsevier. This book was released on 2007 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rosss classic bestseller has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.
Download or read book Probability Theory written by Achim Klenke and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.