Download or read book Introduction to Probability Models written by Sheldon M. Ross and published by Academic Press. This book was released on 2006-12-11 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics
Download or read book Introduction to Probability Models written by Sheldon M. Ross and published by Elsevier. This book was released on 2007 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rosss classic bestseller has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.
Download or read book Introduction to Probability Models Eighth Edition written by Sheldon M. Ross and published by . This book was released on 2003 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Probability Models, 8th Edition, continues to introduce and inspire readers to the art of applying probability theory to phenomena in fields such as engineering, computer science, management and actuarial science, the physical and social sciences, and operations research. Now revised and updated, this best-selling book retains its hallmark intuitive, lively writing style, captivating introduction to applications from diverse disciplines, and plentiful exercises and worked-out examples. The 8th Edition includes five new sections and numerous new examples and exercises, many of which focus on strategies applicable in risk industries such as insurance or actuarial work. The five new sections include: * Section 3.6.4 presents an elementary approach, using only conditional expectation, for computing the expected time until a sequence of independent and identically distributed random variables produce a specified pattern. * Section 3.6.5 derives an identity involving compound Poisson random variables and then uses it to obtain an elegant recursive formula for the probabilities of compound Poisson random variables whose incremental increases are nonnegative and integer valued * Section 5.4.3 is concerned with a conditional Poisson process, a type of process that is widely applicable in the risk industries * Section 7.10 presents a derivation of and a new characterization for the classical insurance ruin probability. * Section 11.8 presents a simulation procedure known as coupling from the past; its use enables one to exactly generate the value of a random variable whose distribution is that of the stationary distribution of a given Markov chain, evenin cases where the stationary distribution cannot itself be explicitly determined. Other Academic Press books by Sheldon Ross: Simulation 3rd Ed., ISBN: 0-12-598053-1 Probability Models for Computer Science, ISBN 0-12-598051-5 Introduction to Probability and Statistics for Engineers and Scientists, 2nd Ed., ISBN: 0-12-598472-3 * Classic text by best-selling author * Continues the tradition of expository excellence * Contains compulsory material for Exam 3 of the Society of Actuaries
Download or read book Introduction to Probability Models Student Solutions Manual e only written by Sheldon M. Ross and published by Academic Press. This book was released on 2010-01-01 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Probability Models, Student Solutions Manual (e-only)
Download or read book Applied Probability Models with Optimization Applications written by Sheldon M. Ross and published by Courier Corporation. This book was released on 2013-04-15 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.
Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Download or read book Introduction to Probability written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2008-07-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.
Download or read book Probability Models for DNA Sequence Evolution written by Rick Durrett and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: "What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.
Download or read book A First Course in Probability written by Sheldon M. Ross and published by . This book was released on 2002 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: P. 15.
Download or read book Introduction to Probability and Stochastic Processes with Applications written by Liliana Blanco Castañeda and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.
Download or read book Introductory Statistics written by Sheldon M. Ross and published by Academic Press. This book was released on 2005-07-11 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Statistics
Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.
Download or read book A Modern Introduction to Probability and Statistics written by F.M. Dekking and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Download or read book An Introduction to Stochastic Modeling written by Howard M. Taylor and published by Academic Press. This book was released on 2014-05-10 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Download or read book Stochastics written by Hans-Otto Georgii and published by Walter de Gruyter. This book was released on 2012-12-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, now in its second revised and extended edition, presents the fundamental ideas and results of both probability theory and statistics. It comprises the material of a one-year course, which is addressed to students of mathematics and to scientists with an interest in the mathematical side of stochastics. The stochastic concepts, models and methods are motivated by examples and then developed and analysed systematically. Some measure theory is included, but this is done at an elementary level that is in accordance with the introductory character of the book. A large number of problems, now in part with solutions, offer applications and supplements to the text.
Download or read book Introduction to Probability Models written by Sheldon M. Ross and published by Academic Press. This book was released on 2019-03-09 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Probability Models, Twelfth Edition, is the latest version of Sheldon Ross's classic bestseller. This trusted book introduces the reader to elementary probability modelling and stochastic processes and shows how probability theory can be applied in fields such as engineering, computer science, management science, the physical and social sciences and operations research. The hallmark features of this text have been retained in this edition, including a superior writing style and excellent exercises and examples covering the wide breadth of coverage of probability topics. In addition, many real-world applications in engineering, science, business and economics are included. - Winner of a 2020 Textbook Excellence Award (College) (Texty) from the Textbook and Academic Authors Association - Retains the valuable organization and trusted coverage that students and professors have relied on since 1972 - Includes new coverage on coupling methods, renewal theory, queueing theory, and a new derivation of Poisson process - Offers updated examples and exercises throughout, along with required material for Exam 3 of the Society of Actuaries
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.