EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Parallel Programming

Download or read book Introduction to Parallel Programming written by Subodh Kumar and published by Cambridge University Press. This book was released on 2022-07-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Ananth Grama and published by Pearson Education. This book was released on 2003 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Roman Trobec and published by Springer. This book was released on 2018-09-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Zbigniew J. Czech and published by Cambridge University Press. This book was released on 2017-01-11 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide for students and practitioners to parallel computing models, processes, metrics, and implementation in MPI and OpenMP.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Vipin Kumar and published by Addison Wesley Longman. This book was released on 1994 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Zbigniew J. Czech and published by Cambridge University Press. This book was released on 2017-01-11 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The constantly increasing demand for more computing power can seem impossible to keep up with. However, multicore processors capable of performing computations in parallel allow computers to tackle ever larger problems in a wide variety of applications. This book provides a comprehensive introduction to parallel computing, discussing theoretical issues such as the fundamentals of concurrent processes, models of parallel and distributed computing, and metrics for evaluating and comparing parallel algorithms, as well as practical issues, including methods of designing and implementing shared- and distributed-memory programs, and standards for parallel program implementation, in particular MPI and OpenMP interfaces. Each chapter presents the basics in one place followed by advanced topics, allowing novices and experienced practitioners to quickly find what they need. A glossary and more than 80 exercises with selected solutions aid comprehension. The book is recommended as a text for advanced undergraduate or graduate students and as a reference for practitioners.

Book Introduction to Parallel Processing

Download or read book Introduction to Parallel Processing written by Behrooz Parhami and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. This trend is expected to continue in the near future. This explosive growth, linked with the expectation that performance will continue its exponential rise with each new generation of hardware and that (in stark contrast to software) computer hardware will function correctly as soon as it comes off the assembly line, has its down side. It has led to unprecedented hardware complexity and almost intolerable dev- opment costs. The challenge facing current and future computer designers is to institute simplicity where we now have complexity; to use fundamental theories being developed in this area to gain performance and ease-of-use benefits from simpler circuits; to understand the interplay between technological capabilities and limitations, on the one hand, and design decisions based on user and application requirements on the other.

Book Introduction to Parallel Programming

Download or read book Introduction to Parallel Programming written by Subodh Kumar and published by Cambridge University Press. This book was released on 2022-10-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces students to the full gamut of different parallel programming styles and their relationship to hardware architecture.

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Theodore Gyle Lewis and published by . This book was released on 1992 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.

Book Introduction to Parallel and Vector Solution of Linear Systems

Download or read book Introduction to Parallel and Vector Solution of Linear Systems written by James M. Ortega and published by Springer Science & Business Media. This book was released on 1988-04-30 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the origins of parallel computing go back to the last century, it was only in the 1970s that parallel and vector computers became available to the scientific community. The first of these machines-the 64 processor llliac IV and the vector computers built by Texas Instruments, Control Data Corporation, and then CRA Y Research Corporation-had a somewhat limited impact. They were few in number and available mostly to workers in a few government laboratories. By now, however, the trickle has become a flood. There are over 200 large-scale vector computers now installed, not only in government laboratories but also in universities and in an increasing diversity of industries. Moreover, the National Science Foundation's Super computing Centers have made large vector computers widely available to the academic community. In addition, smaller, very cost-effective vector computers are being manufactured by a number of companies. Parallelism in computers has also progressed rapidly. The largest super computers now consist of several vector processors working in parallel. Although the number of processors in such machines is still relatively small (up to 8), it is expected that an increasing number of processors will be added in the near future (to a total of 16 or 32). Moreover, there are a myriad of research projects to build machines with hundreds, thousands, or even more processors. Indeed, several companies are now selling parallel machines, some with as many as hundreds, or even tens of thousands, of processors.

Book An Introduction to Distributed and Parallel Processing

Download or read book An Introduction to Distributed and Parallel Processing written by John A. Sharp and published by Wiley-Blackwell. This book was released on 1987 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the highly topical areas of distributed and parallel processing, and will be of value to computer science undergraduates, students of electrical engineering, electronics and microprocessors, and non-specialist professionals working in related areas.

Book Parallel Programming

    Book Details:
  • Author : Bertil Schmidt
  • Publisher : Morgan Kaufmann
  • Release : 2017-11-20
  • ISBN : 0128044861
  • Pages : 416 pages

Download or read book Parallel Programming written by Bertil Schmidt and published by Morgan Kaufmann. This book was released on 2017-11-20 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors’ open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ Contains numerous practical parallel programming exercises Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program Features an example-based teaching of concept to enhance learning outcomes

Book Scientific Parallel Computing

Download or read book Scientific Parallel Computing written by L. Ridgway Scott and published by Princeton University Press. This book was released on 2021-03-09 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book

Book Parallel and High Performance Computing

Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Book High Performance Computing and the Art of Parallel Programming

Download or read book High Performance Computing and the Art of Parallel Programming written by Stan Openshaw and published by Routledge. This book was released on 2005-09-19 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a non-technical introduction to High Performance Computing applications together with advice about how beginners can start to write parallel programs. The authors show what HPC can offer geographers and social scientists and how it can be used in GIS. They provide examples of where it has already been used and suggestions for other areas of application in geography and the social sciences. Case studies drawn from geography explain the key principles and help to understand the logic and thought processes that lie behind the parallel programming.

Book Topics in Parallel and Distributed Computing

Download or read book Topics in Parallel and Distributed Computing written by Sushil K Prasad and published by Morgan Kaufmann. This book was released on 2015-09-16 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. Contributed and developed by the leading minds in parallel computing research and instruction Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline Succinctly addresses a range of parallel and distributed computing topics Pedagogically designed to ensure understanding by experienced engineers and newcomers Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts

Book Parallel Programming Using C

Download or read book Parallel Programming Using C written by Gregory V. Wilson and published by MIT Press. This book was released on 1996-07-08 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.