Download or read book Introduction to Mathematical Structures and Proofs written by Larry Gerstein and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call "mathematical maturity. " I don't believe that "theorem-proving" can be taught any more than "question-answering" can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction.
Download or read book Introduction to Mathematical Structures and Proofs written by Larry J. Gerstein and published by Springer Science & Business Media. This book was released on 2012-06-05 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.
Download or read book An Introduction to Algebraic Structures written by Joseph Landin and published by Courier Corporation. This book was released on 2012-08-29 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
Download or read book Elementary Overview Of Mathematical Structures An Algebra Topology And Categories written by Marco Grandis and published by World Scientific. This book was released on 2020-08-12 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'The presentation is modeled on the discursive style of the Bourbaki collective, and the coverage of topics is rich and varied. Grandis has provided a large selection of exercises and has sprinkled orienting comments throughout. For an undergraduate library where strong students seek an overview of a significant portion of mathematics, this would be an excellent acquisition. Summing up: Recommended.'CHOICESince the last century, a large part of Mathematics is concerned with the study of mathematical structures, from groups to fields and vector spaces, from lattices to Boolean algebras, from metric spaces to topological spaces, from topological groups to Banach spaces.More recently, these structured sets and their transformations have been assembled in higher structures, called categories.We want to give a structural overview of these topics, where the basic facts of the different theories are unified through the 'universal properties' that they satisfy, and their particularities stand out, perhaps even more.This book can be used as a textbook for undergraduate studies and for self-study. It can provide students of Mathematics with a unified perspective of subjects which are often kept apart. It is also addressed to students and researchers of disciplines having strong interactions with Mathematics, like Physics and Chemistry, Statistics, Computer Science, Engineering.
Download or read book Introduction to Mathematical Structures written by Steven Galovich and published by Brooks/Cole Publishing Company. This book was released on 1989-01-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Discrete Mathematical Structures for Computer Science written by Bernard Kolman and published by Prentice Hall. This book was released on 1987 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text has been designed as a complete introduction to discrete mathematics, primarily for computer science majors in either a one or two semester course. The topics addressed are of genuine use in computer science, and are presented in a logically coherent fashion. The material has been organized and interrelated to minimize the mass of definitions and the abstraction of some of the theory. For example, relations and directed graphs are treated as two aspects of the same mathematical idea. Whenever possible each new idea uses previously encountered material, and then developed in such a way that it simplifies the more complex ideas that follow.
Download or read book Mathematical Structures for Computer Science written by Judith L. Gersting and published by Macmillan. This book was released on 2007 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition offers a pedagogically rich and intuitive introduction to discrete mathematics structures. It meets the needs of computer science majors by being both comprehensive and accessible.
Download or read book Discrete Mathematics Proof Techniques And Mathematical Structures written by Robert Clark Penner and published by World Scientific Publishing Company. This book was released on 1999-10-19 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to mathematical proofs and to the fundamentals of modern mathematics. No real prerequisites are needed other than a suitable level of mathematical maturity. The text is divided into two parts, the first of which constitutes the core of a one-semester course covering proofs, predicate calculus, set theory, elementary number theory, relations, and functions, and the second of which applies this material to a more advanced study of selected topics in pure mathematics, applied mathematics, and computer science, specifically cardinality, combinatorics, finite-state automata, and graphs. In both parts, deeper and more interesting material is treated in optional sections, and the text has been kept flexible by allowing many different possible courses or emphases based upon different paths through the volume.
Download or read book Modern Algebra and the Rise of Mathematical Structures written by Leo Corry and published by Birkhäuser. This book was released on 2012-12-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes two stages in the historical development of the notion of mathematical structures: first, it traces its rise in the context of algebra from the mid-1800s to 1930, and then considers attempts to formulate elaborate theories after 1930 aimed at elucidating, from a purely mathematical perspective, the precise meaning of this idea.
Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Download or read book The Structures of Mathematical Physics written by Steven P. Starkovich and published by Springer Nature. This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook serves as an introduction to groups, rings, fields, vector and tensor spaces, algebras, topological spaces, differentiable manifolds and Lie groups --- mathematical structures which are foundational to modern theoretical physics. It is aimed primarily at undergraduate students in physics and mathematics with no previous background in these topics. Applications to physics --- such as the metric tensor of special relativity, the symplectic structures associated with Hamilton's equations and the Generalized Stokes's Theorem --- appear at appropriate places in the text. Worked examples, end-of-chapter problems (many with hints and some with answers) and guides to further reading make this an excellent book for self-study. Upon completing this book the reader will be well prepared to delve more deeply into advanced texts and specialized monographs in theoretical physics or mathematics.
Download or read book Didactical Phenomenology of Mathematical Structures written by Hans Freudenthal and published by Springer Science & Business Media. This book was released on 2005-11-28 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: The launch ofa new book series is always a challenging eventn ot only for the Editorial Board and the Publisher, but also, and more particularly, for the first author. Both the Editorial Board and the Publisher are delightedt hat the first author in this series isw ell able to meet the challenge. Professor Freudenthal needs no introduction toanyone in the Mathematics Education field and it is particularly fitting that his book should be the first in this new series because it was in 1968 that he, and Reidel, produced the first issue oft he journal Edu cational Studies in Mathematics. Breakingfresh ground is therefore nothing new to Professor Freudenthal and this book illustrates well his pleasure at such a task. To be strictly correct the ‘ground’ which he has broken here is not new, but aswith Mathematics as an Educational Task and Weeding and Sowing, it is rather the novelty oft he manner in which he has carried out his analysis which provides us with so many fresh perspectives. It is our intention that this new book series should provide those who work int he emerging discipline of mathematicseducation with an essential resource, and at a time of considerable concern about the whole mathematics cu rriculum this book represents just such resource. ALAN J. BISHOP Managing Editor vii A LOOK BACKWARD AND A LOOK FORWARD Men die, systems last.
Download or read book An Introduction to Mathematical Modeling written by Edward A. Bender and published by Courier Corporation. This book was released on 2012-05-23 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.
Download or read book A Friendly Introduction to Mathematical Logic written by Christopher C. Leary and published by Lulu.com. This book was released on 2015 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Download or read book Discrete Mathematics and Algebraic Structures written by Larry J. Gerstein and published by W H Freeman & Company. This book was released on 1987-01-01 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a brief but substantial introduction to ideas, structures and techniques in discrete mathematics and abstract algebra. It addresses many of the common mathematical needs of students in mathematics and computer science at undergraduate level.
Download or read book Discrete Mathematical Structures 1 e written by U.S. Gupta and published by Pearson Education India. This book was released on 2014 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete Mathematical Structures provides comprehensive, reasonably rigorous and simple explanation of the concepts with the help of numerous applications from computer science and engineering. Every chapter is equipped with a good number of solved examples that elucidate the definitions and theorems discussed. Chapter-end exercises are graded, with the easier ones in the beginning and then the complex ones, to help students for easy solving.
Download or read book An Introduction to Abstract Mathematics written by Robert J. Bond and published by Waveland Press. This book was released on 2007-08-24 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.