Download or read book Introduction to Approximate Groups written by Matthew C. H. Tointon and published by Cambridge University Press. This book was released on 2019-11-14 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive exploration of the main concepts and techniques from the young, exciting field of approximate groups.
Download or read book Introduction to Approximate Groups written by Matthew C. H. Tointon and published by Cambridge University Press. This book was released on 2019-11-14 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximate groups have shot to prominence in recent years, driven both by rapid progress in the field itself and by a varied and expanding range of applications. This text collects, for the first time in book form, the main concepts and techniques into a single, self-contained introduction. The author presents a number of recent developments in the field, including an exposition of his recent result classifying nilpotent approximate groups. The book also features a considerable amount of previously unpublished material, as well as numerous exercises and motivating examples. It closes with a substantial chapter on applications, including an exposition of Breuillard, Green and Tao's celebrated approximate-group proof of Gromov's theorem on groups of polynomial growth. Written by an author who is at the forefront of both researching and teaching this topic, this text will be useful to advanced students and to researchers working in approximate groups and related areas.
Download or read book Introduction to Sofic and Hyperlinear Groups and Connes Embedding Conjecture written by Valerio Capraro and published by Springer. This book was released on 2015-10-12 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rarely explicitly adopted in the literature, clarifies the ideas therein, and provides additional tools to attack open problems. Sofic and hyperlinear groups are countable discrete groups that can be suitably approximated by finite symmetric groups and groups of unitary matrices. These deep and fruitful notions, introduced by Gromov and Radulescu, respectively, in the late 1990s, stimulated an impressive amount of research in the last 15 years, touching several seemingly distant areas of mathematics including geometric group theory, operator algebras, dynamical systems, graph theory, and quantum information theory. Several long-standing conjectures, still open for arbitrary groups, are now settled for sofic or hyperlinear groups. The presentation is self-contained and accessible to anyone with a graduate-level mathematical background. In particular, no specific knowledge of logic or model theory is required. The monograph also contains many exercises, to help familiarize the reader with the topics present.
Download or read book Thin Groups and Superstrong Approximation written by Emmanuel Breuillard and published by Cambridge University Press. This book was released on 2014-02-17 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of survey articles focuses on recent developments at the boundary between geometry, dynamical systems, number theory and combinatorics.
Download or read book Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems written by Antonio Giorgilli and published by Cambridge University Press. This book was released on 2022-05-05 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Download or read book A Course in Stochastic Game Theory written by Eilon Solan and published by Cambridge University Press. This book was released on 2022-05-26 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic games have an element of chance: the state of the next round is determined probabilistically depending upon players' actions and the current state. Successful players need to balance the need for short-term payoffs while ensuring future opportunities remain high. The various techniques needed to analyze these often highly non-trivial games are a showcase of attractive mathematics, including methods from probability, differential equations, algebra, and combinatorics. This book presents a course on the theory of stochastic games going from the basics through to topics of modern research, focusing on conceptual clarity over complete generality. Each of its chapters introduces a new mathematical tool – including contracting mappings, semi-algebraic sets, infinite orbits, and Ramsey's theorem, among others – before discussing the game-theoretic results they can be used to obtain. The author assumes no more than a basic undergraduate curriculum and illustrates the theory with numerous examples and exercises, with solutions available online.
Download or read book Lectures on Lagrangian Torus Fibrations written by Jonny Evans and published by Cambridge University Press. This book was released on 2023-07-20 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symington's almost toric fibrations have played a central role in symplectic geometry over the past decade, from Vianna's discovery of exotic Lagrangian tori to recent work on Fibonacci staircases. Four-dimensional spaces are of relevance in Hamiltonian dynamics, algebraic geometry, and mathematical string theory, and these fibrations encode the geometry of a symplectic 4-manifold in a simple 2-dimensional diagram. This text is a guide to interpreting these diagrams, aimed at graduate students and researchers in geometry and topology. First the theory is developed, and then studied in many examples, including fillings of lens spaces, resolutions of cusp singularities, non-toric blow-ups, and Vianna tori. In addition to the many examples, students will appreciate the exercises with full solutions throughout the text. The appendices explore select topics in more depth, including tropical Lagrangians and Markov triples, with a final appendix listing open problems. Prerequisites include familiarity with algebraic topology and differential geometry.
Download or read book Differential and Low Dimensional Topology written by András Juhász and published by Cambridge University Press. This book was released on 2023-03-31 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new student in differential and low-dimensional topology is faced with a bewildering array of tools and loosely connected theories. This short book presents the essential parts of each, enabling the reader to become 'literate' in the field and begin research as quickly as possible. The only prerequisite assumed is an undergraduate algebraic topology course. The first half of the text reviews basic notions of differential topology and culminates with the classification of exotic seven-spheres. It then dives into dimension three and knot theory. There then follows an introduction to Heegaard Floer homology, a powerful collection of modern invariants of three- and four-manifolds, and of knots, that has not before appeared in an introductory textbook. The book concludes with a glimpse of four-manifold theory. Students will find it an exhilarating and authoritative guide to a broad swathe of the most important topics in modern topology.
Download or read book Fast Track to Forcing written by Mirna Džamonja and published by Cambridge University Press. This book was released on 2020-10-15 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This quick yet detailed introduction to set theory and forcing builds the reader's intuition about it as much as the mathematical detail. Intuition, rather absent from the existing literature on the subject, here plays a large role. The reader will not only learn the facts, but will understand why they are true and will be brought to ask: what else could be true? Having presented forcing in Part I, the second part of the book discusses contemporary issues in the theory of forcing. It includes known and some previously unpublished results as well as many open questions. This is ideal for those who want to start a research career in forcing but do not have a personal interlocutor. Obviously, not everything about forcing is in this book. Many references are included to help the reader further explore the vast amount of research literature available on the subject.
Download or read book CRC Handbook of Lie Group Analysis of Differential Equations Volume III written by Nail H. Ibragimov and published by CRC Press. This book was released on 2024-11-01 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Download or read book Groups St Andrews 2013 written by C. M. Campbell and published by Cambridge University Press. This book was released on 2015-10-22 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading researchers survey the latest developments in group theory and many related areas.
Download or read book Hilbert s Fifth Problem and Related Topics written by Terence Tao and published by American Mathematical Soc.. This book was released on 2014-07-18 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.
Download or read book Symmetries and Applications of Differential Equations written by Albert C. J. Luo and published by Springer Nature. This book was released on 2021-12-14 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939–2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
Download or read book CRC Handbook of Lie Group Analysis of Differential Equations written by Nail H. Ibragimov and published by CRC Press. This book was released on 1995-10-24 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Download or read book Introduction to the Functional Renormalization Group written by Peter Kopietz and published by Springer Science & Business Media. This book was released on 2010-05-03 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics.
Download or read book Introduction to Elementary Particle Theory written by Yu. V. Novozhilov and published by Elsevier. This book was released on 2013-10-22 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Elementary Particle Theory details the fundamental concepts and basic principles of the theory of elementary particles. The title emphasizes on the phenomenological foundations of relativistic theory and to the strong interactions from the S-matrix standpoint. The text first covers the basic description of elementary particles, and then proceeds to tackling relativistic quantum mechanics and kinematics. Next the selection deals with the problem of internal symmetry. In the last part, the title details the elements of dynamical theory. The book will be of great use to students and researchers in the field of particle physics.
Download or read book Reuniting the Antipodes Constructive and Nonstandard Views of the Continuum written by Peter Schuster and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: At first glance, Robinson's original form of nonstandard analysis appears nonconstructive in essence, because it makes a rather unrestricted use of classical logic and set theory and, in particular, of the axiom of choice. Recent developments, however, have given rise to the hope that the distance between constructive and nonstandard mathematics is actually much smaller than it appears. So the time was ripe for the first meeting dedicated simultaneously to both ways of doing mathematics – and to the current and future reunion of these seeming opposites. Consisting of peer-reviewed research and survey articles written on the occasion of such an event, this volume offers views of the continuum from various standpoints. Including historical and philosophical issues, the topics of the contributions range from the foundations, the practice, and the applications of constructive and nonstandard mathematics, to the interplay of these areas and the development of a unified theory.