EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data

Download or read book Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data written by Kristin Blesch and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explainable artificial intelligence or interpretable machine learning techniques aim to shed light on the behavior of opaque machine learning algorithms, yet often fail to acknowledge the challenges real-world data imposes on the task. Specifically, the fact that empirical tabular datasets may consist of both continuous and categorical features (mixed data) and typically exhibit dependency structures is frequently overlooked. This work uses a statistical perspective to illuminate the far-reaching implications of mixed data and dependency structures for interpretability in machine learning. Several interpretability methods are advanced with a particular focus on this kind of data, evaluating their performance on simulated and real data sets. Further, this cumulative thesis emphasizes that generating synthetic data is a crucial subroutine for many interpretability methods. Therefore, this thesis also advances methodology in generative modeling concerning mixed tabular data, presenting a tree-based approach for density estimation and data generation, accompanied by a user-friendly software implementation in the Python programming language.

Book Interpretable Machine Learning with Python

Download or read book Interpretable Machine Learning with Python written by Serg Masís and published by Packt Publishing Ltd. This book was released on 2021-03-26 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable models Key Features Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What you will learn Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for This book is primarily written for data scientists, machine learning developers, and data stewards who find themselves under increasing pressures to explain the workings of AI systems, their impacts on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a solid grasp on the Python programming language and ML fundamentals is needed to follow along.

Book Synthesizing Tabular Data Using Conditional GAN

Download or read book Synthesizing Tabular Data Using Conditional GAN written by Lei Xu (S.M.) and published by . This book was released on 2020 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: In data science, the ability to model the distribution of rows in tabular data and generate realistic synthetic data enables various important applications including data compression, data disclosure, and privacy-preserving machine learning. However, because tabular data usually contains a mix of discrete and continuous columns, building such a model is a non-trivial task. Continuous columns may have multiple modes, while discrete columns are sometimes imbalanced, making modeling difficult. To address this problem, I took two major steps. (1) I designed SDGym, a thorough benchmark, to compare existing models, identify different properties of tabular data and analyze how these properties challenge different models. Our experimental results show that statistical models, such as Bayesian networks, that are constrained to a fixed family of available distributions cannot model tabular data effectively, especially when both continuous and discrete columns are included. Recently proposed deep generative models are capable of modeling more sophisticated distributions, but cannot outperform Bayesian network models in practice, because the network structure and learning procedure are not optimized for tabular data which may contain non-Gaussian continuous columns and imbalanced discrete columns. (2) To address these problems, I designed CTGAN, which uses a conditional generative adversarial network to address the challenges in modeling tabular data. Because CTGAN uses reversible data transformations and is trained by re-sampling the data, it can address common challenges in synthetic data generation. I evaluated CTGAN on the benchmark and showed that it consistently and significantly outperforms existing statistical and deep learning models.

Book Toward Interpretable Machine Learning  with Applications to Large scale Industrial Systems Data

Download or read book Toward Interpretable Machine Learning with Applications to Large scale Industrial Systems Data written by Graziano Mita and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributions presented in this work are two-fold. We first provide a general overview of explanations and interpretable machine learning, making connections with different fields, including sociology, psychology, and philosophy, introducing a taxonomy of popular explainability approaches and evaluation methods. We subsequently focus on rule learning, a specific family of transparent models, and propose a novel rule-based classification approach, based on monotone Boolean function synthesis: LIBRE. LIBRE is an ensemble method that combines the candidate rules learned by multiple bottom-up learners with a simple union, in order to obtain a final intepretable rule set. Our method overcomes most of the limitations of state-of-the-art competitors: it successfully deals with both balanced and imbalanced datasets, efficiently achieving superior performance and higher interpretability in real datasets. Interpretability of data representations constitutes the second broad contribution to this work. We restrict our attention to disentangled representation learning, and, in particular, VAE-based disentanglement methods to automatically learn representations consisting of semantically meaningful features. Recent contributions have demonstrated that disentanglement is impossible in purely unsupervised settings. Nevertheless, incorporating inductive biases on models and data may overcome such limitations. We present a new disentanglement method - IDVAE - with theoretical guarantees on disentanglement, deriving from the employment of an optimal exponential factorized prior, conditionally dependent on auxiliary variables complementing input observations. We additionally propose a semi-supervised version of our method. Our experimental campaign on well-established datasets in the literature shows that IDVAE often beats its competitors according to several disentanglement metrics.

Book Introduction of High dimensional Interpretable Machine Learning Models and Their Applications

Download or read book Introduction of High dimensional Interpretable Machine Learning Models and Their Applications written by Simon Bussy and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on the introduction of new interpretable machine learning methods in a high-dimensional setting. We developped first the C-mix, a mixture model of censored durations that automatically detects subgroups based on the risk that the event under study occurs early; then the binarsity penalty combining a weighted total variation penalty with a linear constraint per block, that applies on one-hot encoding of continuous features; and finally the binacox model that uses the binarsity penalty within a Cox model to automatically detect cut-points in the continuous features. For each method, theoretical properties are established: algorithm convergence, non-asymptotic oracle inequalities, and comparison studies with state-of-the-art methods are carried out on both simulated and real data. All proposed methods give good results in terms of prediction performances, computing time, as well as interpretability abilities.

Book Variational Methods for Machine Learning with Applications to Deep Networks

Download or read book Variational Methods for Machine Learning with Applications to Deep Networks written by Lucas Pinheiro Cinelli and published by Springer. This book was released on 2022-05-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.

Book Interactive and Interpretable Machine Learning Models for Human Machine Collaboration

Download or read book Interactive and Interpretable Machine Learning Models for Human Machine Collaboration written by Been Kim and published by . This book was released on 2015 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: I envision a system that enables successful collaborations between humans and machine learning models by harnessing the relative strength to accomplish what neither can do alone. Machine learning techniques and humans have skills that complement each other - machine learning techniques are good at computation on data at the lowest level of granularity, whereas people are better at abstracting knowledge from their experience, and transferring the knowledge across domains. The goal of this thesis is to develop a framework for human-in-the-loop machine learning that enables people to interact effectively with machine learning models to make better decisions, without requiring in-depth knowledge about machine learning techniques. Many of us interact with machine learning systems everyday. Systems that mine data for product recommendations, for example, are ubiquitous. However these systems compute their output without end-user involvement, and there are typically no life or death consequences in the case the machine learning result is not acceptable to the user. In contrast, domains where decisions can have serious consequences (e.g., emergency response panning, medical decision-making), require the incorporation of human experts' domain knowledge. These systems also must be transparent to earn experts' trust and be adopted in their workflow. The challenge addressed in this thesis is that traditional machine learning systems are not designed to extract domain experts' knowledge from natural workflow, or to provide pathways for the human domain expert to directly interact with the algorithm to interject their knowledge or to better understand the system output. For machine learning systems to make a real-world impact in these important domains, these systems must be able to communicate with highly skilled human experts to leverage their judgment and expertise, and share useful information or patterns from the data. In this thesis, I bridge this gap by building human-in-the-loop machine learning models and systems that compute and communicate machine learning results in ways that are compatible with the human decision-making process, and that can readily incorporate human experts' domain knowledge. I start by building a machine learning model that infers human teams' planning decisions from the structured form of natural language of team meetings. I show that the model can infer a human teams' final plan with 86% accuracy on average. I then design an interpretable machine learning model then "makes sense to humans" by exploring and communicating patterns and structure in data to support human decision-making. Through human subject experiments, I show that this interpretable machine learning model offers statistically significant quantitative improvements in interpretability while preserving clustering performance. Finally, I design a machine learning model that supports transparent interaction with humans without requiring that a user has expert knowledge of machine learning technique. I build a human-in-the-loop machine learning system that incorporates human feedback and communicates its internal states to humans, using an intuitive medium for interaction with the machine learning model. I demonstrate the application of this model for an educational domain in which teachers cluster programming assignments to streamline the grading process.

Book Explainable AI  Interpreting  Explaining and Visualizing Deep Learning

Download or read book Explainable AI Interpreting Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Book Towards Interpretable Machine Learning with Applications to Clinical Decision Support

Download or read book Towards Interpretable Machine Learning with Applications to Clinical Decision Support written by Zhicheng Cui and published by . This book was released on 2019 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning models have achieved impressive predictive performance in various applications such as image classification and object recognition. However, understanding how machine learning models make decisions is essential when deploying those models in critical areas such as clinical prediction and market analysis, where prediction accuracy is not the only concern. For example, in the clinical prediction of ICU transfers, in addition to accurate predictions, doctors need to know the contributing factors that triggered the alert, which factors can be quickly altered to prevent the ICU transfer. While interpretable machine learning has been extensively studied for years, challenges remain as among all the advanced machine learning classifiers, few of them try to address both of those needs. In this dissertation, we point out the imperative properties of interpretable machine learning, especially for clinical decision support and explore three related directions. First, we propose a post-analysis method to extract actionable knowledge from random forest and additive tree models. Then, we equip the logistic regression model with nonlinear separability while preserving its interpretability. Last but not least, we propose an interpretable factored generalized additive model that allows feature interactions to further increase the prediction accuracy. In the end, we propose a deep learning framework for 30-day mortality prediction, that can handle heterogeneous data types.

Book Interpretable Machine Learning Models for Predicting with Missing Values

Download or read book Interpretable Machine Learning Models for Predicting with Missing Values written by Lena Stempfle and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Explanatory Model Analysis

Download or read book Explanatory Model Analysis written by Przemyslaw Biecek and published by CRC Press. This book was released on 2021-02-15 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book Causal Inference in Statistics

Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Book Techniques for Interpretable Machine Learning

Download or read book Techniques for Interpretable Machine Learning written by and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Constraint Based Approaches to Interpretable and Semi supervised Machine Learning

Download or read book Constraint Based Approaches to Interpretable and Semi supervised Machine Learning written by Shalmali Dilip Joshi and published by . This book was released on 2018 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interpretability and Explainability of machine learning algorithms are becoming increasingly important as Machine Learning (ML) systems get widely applied to domains like clinical healthcare, social media and governance. A related major challenge in deploying ML systems pertains to reliable learning when expert annotation is severely limited. This dissertation prescribes a common framework to address these challenges, based on the use of constraints that can make an ML model more interpretable, lead to novel methods for explaining ML models, or help to learn reliably with limited supervision. In particular, we focus on the class of latent variable models and develop a general learning framework by constraining realizations of latent variables and/or model parameters. We propose specific constraints that can be used to develop identifiable latent variable models, that in turn learn interpretable outcomes. The proposed framework is first used in Non–negative Matrix Factorization and Probabilistic Graphical Models. For both models, algorithms are proposed to incorporate such constraints with seamless and tractable augmentation of the associated learning and inference procedures. The utility of the proposed methods is demonstrated for our working application domain – identifiable phenotyping using Electronic Health Records (EHRs). Evaluation by domain experts reveals that the proposed models are indeed more clinically relevant (and hence more interpretable) than existing counterparts. The work also demonstrates that while there may be inherent trade–offs between constraining models to encourage interpretability, the quantitative performance of downstream tasks remains competitive. We then focus on constraint based mechanisms to explain decisions or outcomes of supervised black-box models. We propose an explanation model based on generating examples where the nature of the examples is constrained i.e. they have to be sampled from the underlying data domain. To do so, we train a generative model to characterize the data manifold in a high dimensional ambient space. Constrained sampling then allows us to generate naturalistic examples that lie along the data manifold. We propose ways to summarize model behavior using such constrained examples. In the last part of the contributions, we argue that heterogeneity of data sources is useful in situations where very little to no supervision is available. This thesis leverages such heterogeneity (via constraints) for two critical but widely different machine learning algorithms. In each case, a novel algorithm in the sub-class of co–regularization is developed to combine information from heterogeneous sources. Co–regularization is a framework of constraining latent variables and/or latent distributions in order to leverage heterogeneity. The proposed algorithms are utilized for clustering, where the intent is to generate a partition or grouping of observed samples, and for Learning to Rank algorithms – used to rank a set of observed samples in order of preference with respect to a specific search query. The proposed methods are evaluated on clustering web documents, social network users, and information retrieval applications for ranking search queries.

Book Model Based Machine Learning

Download or read book Model Based Machine Learning written by John Winn and published by CRC Press. This book was released on 2023-11-30 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system. The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem. Features: Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. Explains machine learning concepts as they arise in real-world case studies. Shows how to diagnose, understand and address problems with machine learning systems. Full source code available, allowing models and results to be reproduced and explored. Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.