EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Interpolation and Approximation with Splines and Fractals

Download or read book Interpolation and Approximation with Splines and Fractals written by Peter Robert Massopust and published by . This book was released on 2010 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended to supplement the classical theory of uni- and multivariate splines and their approximation and interpolation properties with those of fractals, fractal functions, and fractal surfaces. This synthesis will complement currently required courses dealing with these topics and expose the prospective reader to some new and deep relationships. In addition to providing a classical introduction to the main issues involving approximation and interpolation with uni- and multivariate splines, cardinal and exponential splines, and their connection to wavelets and multiscale analysis, which comprises the first half of the book, the second half will describe fractals, fractal functions and fractal surfaces, and their properties. This also includes the new burgeoning theory of superfractals and superfractal functions. The theory of splines is well-established but the relationship to fractal functions is novel. Throughout the book, connections between these two apparently different areas will be exposed and presented. In this way, more options are given to the prospective reader who will encounter complex approximation and interpolation problems in real-world modeling. Numerous examples, figures, and exercises accompany the material.

Book Spline Functions and Multivariate Interpolations

Download or read book Spline Functions and Multivariate Interpolations written by Borislav D. Bojanov and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given.

Book Interpolating Cubic Splines

Download or read book Interpolating Cubic Splines written by Gary D. Knott and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images.

Book Handbook of Nature Inspired and Innovative Computing

Download or read book Handbook of Nature Inspired and Innovative Computing written by Albert Y. Zomaya and published by Springer. This book was released on 2008-11-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.

Book The Theory of Splines and Their Applications

Download or read book The Theory of Splines and Their Applications written by J. H. Ahlberg and published by Elsevier. This book was released on 2016-06-03 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Theory of Splines and Their Applications discusses spline theory, the theory of cubic splines, polynomial splines of higher degree, generalized splines, doubly cubic splines, and two-dimensional generalized splines. The book explains the equations of the spline, procedures for applications of the spline, convergence properties, equal-interval splines, and special formulas for numerical differentiation or integration. The text explores the intrinsic properties of cubic splines including the Hilbert space interpretation, transformations defined by a mesh, and some connections with space technology concerning the payload of a rocket. The book also discusses the theory of polynomial splines of odd degree which can be approached through algebraically (which depends primarily on the examination in detail of the linear system of equations defining the spline). The theory can also be approached intrinsically (which exploits the consequences of basic integral relations existing between functions and approximating spline functions). The text also considers the second integral relation, raising the order of convergence, and the limits on the order of convergence. The book will prove useful for mathematicians, physicist, engineers, or academicians in the field of technology and applied mathematics.

Book Python Programming and Numerical Methods

Download or read book Python Programming and Numerical Methods written by Qingkai Kong and published by Academic Press. This book was released on 2020-11-27 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online

Book Cardinal Spline Interpolation

Download or read book Cardinal Spline Interpolation written by I. J. Schoenberg and published by SIAM. This book was released on 1973-01-01 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author explains cardinal spline functions, the basic properties of B-splines and exponential Euler splines.

Book Interpolation and Approximation by Polynomials

Download or read book Interpolation and Approximation by Polynomials written by George M. Phillips and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.

Book Spline Functions  Basic Theory

Download or read book Spline Functions Basic Theory written by Larry Schumaker and published by Cambridge University Press. This book was released on 2007-08-16 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic work continues to offer a comprehensive treatment of the theory of univariate and tensor-product splines. It will be of interest to researchers and students working in applied analysis, numerical analysis, computer science, and engineering. The material covered provides the reader with the necessary tools for understanding the many applications of splines in such diverse areas as approximation theory, computer-aided geometric design, curve and surface design and fitting, image processing, numerical solution of differential equations, and increasingly in business and the biosciences. This new edition includes a supplement outlining some of the major advances in the theory since 1981, and some 250 new references. It can be used as the main or supplementary text for courses in splines, approximation theory or numerical analysis.

Book Interpolation and Approximation

Download or read book Interpolation and Approximation written by Philip J. Davis and published by Courier Corporation. This book was released on 1975-01-01 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.

Book Theory and Applications of Spline Functions

Download or read book Theory and Applications of Spline Functions written by Thomas Nall Eden Greville and published by . This book was released on 1969 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Approximation and Modeling with B Splines

Download or read book Approximation and Modeling with B Splines written by Klaus Hollig and published by SIAM. This book was released on 2015-07-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.

Book Approximation Theory and Spline Functions

Download or read book Approximation Theory and Spline Functions written by S.P. Singh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: A NATO Advanced Study Institute on Approximation Theory and Spline Functions was held at Memorial University of Newfoundland during August 22-September 2, 1983. This volume consists of the Proceedings of that Institute. These Proceedings include the main invited talks and contributed papers given during the Institute. The aim of these lectures was to bring together Mathematicians, Physicists and Engineers working in the field. The lectures covered a wide range including ~1ultivariate Approximation, Spline Functions, Rational Approximation, Applications of Elliptic Integrals and Functions in the Theory of Approximation, and Pade Approximation. We express our sincere thanks to Professors E. W. Cheney, J. Meinguet, J. M. Phillips and H. Werner, members of the International Advisory Committee. We also extend our thanks to the main speakers and the invi ted speakers, whose contri butions made these Proceedings complete. The Advanced Study Institute was financed by the NATO Scientific Affairs Division. We express our thanks for the generous support. We wish to thank members of the Department of Mathematics and Statistics at MeMorial University who willingly helped with the planning and organizing of the Institute. Special thanks go to Mrs. Mary Pike who helped immensely in the planning and organizing of the Institute, and to Miss Rosalind Genge for her careful and excellent typing of the manuscript of these Proceedings.

Book On Approximation Theory

Download or read book On Approximation Theory written by Paul Leo Butzer and published by . This book was released on 1964 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spline Functions on Triangulations

Download or read book Spline Functions on Triangulations written by Ming-Jun Lai and published by Cambridge University Press. This book was released on 2007-04-19 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive graduate text offering a detailed mathematical treatment of polynomial splines on triangulations.

Book Computer Aided Geometric Design

Download or read book Computer Aided Geometric Design written by Robert E. Barnhill and published by Academic Press. This book was released on 2014-05-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Aided Geometric Design covers the proceedings of the First International Conference on Computer Aided Geometric Design, held at the University of Utah on March 18-21, 1974. This book is composed of 15 chapters and starts with reviews of the properties of surface patch equation and the use of computers in geometrical design. The next chapters deal with the principles of smooth interpolation over triangles and without twist constraints, as well as the graphical representation of surfaces over triangles and rectangles. These topics are followed by discussions of the B-spline curves and surfaces; mathematical and practical possibilities of UNISURF; nonlinear splines; and some piecewise polynomial alternatives to splines under tension. Other chapters explore the smooth parametric surfaces, the space curve as a folded edge, and the interactive computer graphics application of the parametric bi-cubic surface to engineering design problems. The final chapters look into the three-dimensional human-machine communication and a class of local interpolating splines. This book will prove useful to design engineers.

Book Quantitative Methods of Data Analysis for the Physical Sciences and Engineering

Download or read book Quantitative Methods of Data Analysis for the Physical Sciences and Engineering written by Douglas G. Martinson and published by Cambridge University Press. This book was released on 2018-04-30 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides thorough and comprehensive coverage of most of the new and important quantitative methods of data analysis for graduate students and practitioners. In recent years, data analysis methods have exploded alongside advanced computing power, and it is critical to understand such methods to get the most out of data, and to extract signal from noise. The book excels in explaining difficult concepts through simple explanations and detailed explanatory illustrations. Most unique is the focus on confidence limits for power spectra and their proper interpretation, something rare or completely missing in other books. Likewise, there is a thorough discussion of how to assess uncertainty via use of Expectancy, and the easy to apply and understand Bootstrap method. The book is written so that descriptions of each method are as self-contained as possible. Many examples are presented to clarify interpretations, as are user tips in highlighted boxes.