EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Interface Engineering in Emerging Thin Film Photovoltaics

Download or read book Interface Engineering in Emerging Thin Film Photovoltaics written by and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis explores interface engineering in emerging photovoltaics with the aim of designing selective contact layer to reduce recombination losses. I present the motivation and basic concepts of this work in Chapters 1 and 2. The primary focus of this work is on the development and characterization of novel solar cell architectures based on metal halide perovskites and reaction center - light harvesting 1 (RC-LH1) absorber layer, with specific attention given to designing, optimizing, and characterizing selective contacts. Next, I present the impedance analysis complemented with optical, structural and electrical characterization to elucidate the physicochemical properties of device interfaces in various emerging photovoltaic structures. Chapter 3 specifically focuses on quantifying electrochemical losses in perovskite solar cell (PSC) based on methylammonium lead triiodide (MAPbI3) films using impedance analysis. I explicate the underlying physical origin of the negative capacitance by applying a generalized equivalent circuit model (ECM) for PSCs. The ECM takes into account for fast electrical dynamics resulting in high frequency signatures due to electronic processes, and much slower electrochemical dynamics that result in low frequency (LF) signatures in the spectra. Analysis of the LF dynamics provides detailed insight into loss processes in the PSC, particularly ionic dynamics, which can be attributed to the migration of MA+ and I- ions in the MAPbI3 absorber layers. Chapter 4 focuses on quantifying the impact of C60-passivation at the ZnO/perovskite interface. In this study, I apply the C60/ZnO as electron transport layer (ETL) in solar cells based on mixed-cation and mixed-halide lead perovskite (Cs0.15FA0.85PbI2.75Br0.25). The incorporation of the C60 interlayer results in an improvement in the power conversion efficiency (PCE), due to an increase in the open-circuit voltage (Voc) and in the fill factor (FF).

Book Interface Engineering and Morphology Study of Thin Film Organic Inorganic Halide Perovskite Optoelectronic Devices

Download or read book Interface Engineering and Morphology Study of Thin Film Organic Inorganic Halide Perovskite Optoelectronic Devices written by Lei Meng and published by . This book was released on 2017 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar energy harvesting through photovoltaic conversion has gained great attention as a sustainable and environmentally friendly solution to meet the rapidly increasing global energy demand. Currently, the high cost of solar-cell technology limits its widespread use. This situation has generated considerable interest in developing alternative solar-cell technologies that reduce cost through the use of less expensive materials and processes. Perovskite solar cells provide a promising low-cost technology for harnessing this energy source. In Chapter two, a moisture-assist method is introduced and studied to facilitate grain growth of solution processed perovskite films. As an approach to achieve high-quality perovskite films, I anneal the precursor film in a humid environment (ambient air) to dramatically increase grain size, carrier mobility, and charge carrier lifetime, thus improving electrical and optical properties and enhancing photovoltaic performance. It is revealed that mild moisture has a positive effect on perovskite film formation, demonstrating perovskite solar cells with 17.1% power conversion efficiency. Later on, in Chapter four, an ultrathin flexible device delivering a PCE of 14.0% is introduced. The device is based on silver-mesh substrates exhibiting superior durability against mechanical bending. Due to their low energy of formation, organic lead iodide perovskites are also susceptible to degradation in moisture and air. The charge transport layer therefore plays a key role in protecting the perovskite photoactive layer from exposure to such environments, thus achieving highly stable perovskite-based photovoltaic cells. Although incorporating organic charge transport layers can provide high efficiencies and reduced hysteresis, concerns remain regarding device stability and the cost of fabrication. In this work, perovskite solar cells that have all solution-processed metal oxide charge transport layers were demonstrated. Stability has been significantly improved compared with cells made with organic layers. Degradation mechanisms were investigated and important guidelines were derived for future device design with a view to achieving both highly efficient and stable solar devices. Organometal halide based perovskite material has great optoelectronic proprieties, for example, shallow traps, benign grain boundaries and high diffusion length. The perovskite LEDs show pure electroluminescence (EL) with narrow full width at half maximum (FWHM), which is an advantage for display, lighting or lasing applications. In chapter five, perovskite LEDs are demonstrated employing solution processed charge injection layers with a quantum efficiency of 1.16% with a very low driving voltage.

Book Advanced Characterization Techniques for Thin Film Solar Cells

Download or read book Advanced Characterization Techniques for Thin Film Solar Cells written by Uwe Rau and published by John Wiley & Sons. This book was released on 2011-05-25 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by scientists from leading institutes in Germany, USA and Spain who use these techniques as the core of their scientific work and who have a precise idea of what is relevant for photovoltaic devices, this text contains concise and comprehensive lecture-like chapters on specific research methods. They focus on emerging, specialized techniques that are new to the field of photovoltaics yet have a proven relevance. However, since new methods need to be judged according to their implications for photovoltaic devices, a clear introductory chapter describes the basic physics of thin-film solar cells and modules, providing a guide to the specific advantages that are offered by each individual method. The choice of subjects is a representative cross-section of those methods enjoying a high degree of visibility in recent scientific literature. Furthermore, they deal with specific device-related topics and include a selection of material and surface/interface analysis methods that have recently proven their relevance. Finally, simulation techniques are presented that are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D and 2D. For students in physics, solid state physicists, materials scientists, PhD students in material sciences, materials institutes, semiconductor physicists, and those working in the semiconductor industry, as well as being suitable as supplementary reading in related courses.

Book Printable Solar Cells

    Book Details:
  • Author : Nurdan Demirci Sankir
  • Publisher : John Wiley & Sons
  • Release : 2017-04-19
  • ISBN : 1119283736
  • Pages : 578 pages

Download or read book Printable Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2017-04-19 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.

Book Thin Films Photovoltaics

Download or read book Thin Films Photovoltaics written by Beddiaf Zaidi and published by BoD – Books on Demand. This book was released on 2022-02-23 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film photovoltaic-based solar modules produce power at a low cost per watt. They are ideal candidates for large-scale solar farms as well as building-integrated photovoltaic applications. They can generate consistent power, not only at elevated temperatures but also on cloudy, overcast days and at low sun angles.Thin film photovoltaics are second-generation solar cells produced by depositing one or more thin layers, or thin films, of photosensitive material on a suitable substrate such as glass, polymer, or metal. Thin film solar cells are based on various materials such as cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin film silicon (a-Si, TF-Si) are commercially used in several conventional and advanced technologies.

Book Next Generation Multilayer Graded Bandgap Solar Cells

Download or read book Next Generation Multilayer Graded Bandgap Solar Cells written by A. A. Ojo and published by Springer. This book was released on 2018-08-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will guide Photovoltaics researchers in a new way of thinking about harvesting light energy from all wavelengths of the solar spectrum. It closes the gap between general solar cells books and photovoltaics journal articles, by focusing on the latest developments in our understanding of solid-state device physics. The material presented is experimental and based on II-VI thin-film materials, mainly CdTe-based solar cells. The authors describe the use of new device design, based on multilayer graded bandgap configuration, using CdTe-based solar cells. The authors also explain how the photo-generated currents can be enhanced using multi-step charge carrier production. The possibility of fabricating these devices using low-cost and scalable electroplating is demonstrated. The value of electroplating for large area electronic devices such as PV solar panels, display devices and nano-technology devices are also demonstrated. By enabling new understanding of the engineering of electroplated semiconductor materials and providing an overview of the semiconductor physics and technology, this practical book is ideal to guide researchers, engineers, and manufacturers on future solar cell device designs and fabrications. Discusses in detail the processes of growths, treatments, solar cell device fabrication and solid state physics, improving readers’ understanding of fundamental solid state physics; Enables future improvements in CdTe-based device efficiency; Explains the significance of defects in deposited semiconductor materials and interfaces that affect the material properties and resulting device performance.

Book Interface Engineering and Characterization in Dye and Quantum Dot sensitized Solar Cells

Download or read book Interface Engineering and Characterization in Dye and Quantum Dot sensitized Solar Cells written by Thomas P. Brennan and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing demand for energy as standards of living and population sizes rise across the globe motivates the development of scalable resources to meet the forecasted doubling of energy consumption. This challenge is further compounded by the need to reduce the CO2 emissions associated with our current level of energy consumption in order to stave off costly changes in the global climate. Solar energy promises renewable, carbon-free energy and a resource that is orders of magnitude larger than alternative sources. Capturing this solar energy with photovoltaic devices has become an increasingly economical means of energy production, but further development is needed to make solar energy conversion inexpensive and ubiquitous. One particular class of photovoltaics--the dye-sensitized solar cell (DSSC)--is especially appealing because it can be constructed with abundant, inexpensive materials and be engineered in a modular fashion for a wide array of product applications. Challenges remain, however, in order to make DSSCs more efficient, more economical, and more practical. The DSSC architecture is quite different than traditional--i.e. silicon and thin film inorganic--photovoltaics in that light harvesting and charge collection are decoupled. This is achieved by depositing a thin nanometer-scale layer of light-absorbing dye molecules atop a high surface area nanostructured TiO2 anode. The consequence of this architecture, however, is an abundance of interfacial area at which deleterious charge recombination processes can occur. Further improvements in DSSC performance therefore require a thorough understanding of and high control over the dual-interface that exists between the dye layer and the electron-conducting anode and the dye layer and the hole-transporting material (HTM). In the first part of this work we describe the application of thin, sub-nanometer insulating metal oxide layers grown by atomic layer deposition (ALD) to the TiO2 anode for the purpose of slowing down the undesirable back-recombination of electrons injected into TiO2 by the light-absorbing dye molecules. We use the well-characterized insulator Al2O3 as a recombination barrier material and perform a comprehensive study of different parameters that impact how such barriers change device performance. In a solid-state DSSC we demonstrate the importance of the dye chemical structure and the anode fabrication process in dictating whether or not improvements achieved through the recombination suppression outweigh device current losses that result from the insertion of an insulating layer. We apply these lessons to a new barrier layer material, In2O3, that unlike Al2O3 has not been previously well-characterized but is less-insulating and can be grown at an extremely low growth rate, providing excellent control over the competing consequences of barrier layers. With In2O3 we are able to demonstrate some of the highest ever reported open-circuit voltages for this class of DSSC and we observe an unexpected change in behavior as the In2O3 barriers reach a certain thickness. In our third barrier layer study, we achieve a near-doubling in efficiency when Al2O3 is applied to a quantum dot-sensitized solar cell, a close analogue of the DSSC, wherein recombination more severely limits device performance. In the second part of this work, we combine experimental and computational techniques to study the dye/anode interface and the orientation of dye molecules adsorbed on a TiO2 surface. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to measure the angles of individual bonds and in turn deduce the full geometry of adsorbed dye molecules. This result is compared to computational simulations using density functional theory-molecular dynamics (DFT-MD) of the same dye/TiO2 system. Our results show remarkable correspondence between the experimental and computational approaches and signify important consequences for understanding the dye/anode interface in DSSCs as well as adsorbate/substrate studies more generally.

Book Sulfide and Selenide Based Materials for Emerging Applications

Download or read book Sulfide and Selenide Based Materials for Emerging Applications written by Goutam Kumar Dalapati and published by Elsevier. This book was released on 2022-06-17 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sulfide and Selenide-Based Materials for Emerging Applications explores a materials and device-based approach to the transition to low-cost sustainable thin film photovoltaic devices and energy storage systems. Part 1 examines recent advances in renewable technologies and materials for sustainable development, as well as photovoltaic energy storage devices. Part 2 discusses thin film solar cells with earth abundant materials, highlighting the power conversion efficiency of the kesterite-based solar cells. Kesterite film technology including different synthesis and doping method designs are also discussed, along with emerging sulfide semiconductors with potential in thin film photovoltaics/flexible devices. In Part 3 sulfur- and selenides-based materials for thermoelectric applications are explored. Part 4 covers chalcogenide semiconductors with applications in electrochemical water splitting for green hydrogen generation and oxygen generation, as well as the latest research on layered 2D transition metal chalcogenides for electrochemical water splitting. To conclude, part 5 discusses recent developments of storage technologies such as Li-S batteries, sulfide-based supercapacitors and metal-ion batteries, and the development of 3D printing sulfides/selenides for energy conversion and storage. This book is a useful resource for those involved in green energy technology and decarbonization and is designed for a broad audience, from students to experienced scientists. - Discusses the emerging sulfide/selenide based thin film absorber materials and their deposition methods - Previews device engineering techniques that have been developed to enhance the power conversion efficiency and lifetime of sulfide/selenide based thin film solar cells - Provides an update on what low cost sulfide/selenide based electro-catalysts have become available and the comparison of their performance vs. noble metal catalysts

Book Optical Modeling and Simulation of Thin Film Photovoltaic Devices

Download or read book Optical Modeling and Simulation of Thin Film Photovoltaic Devices written by Janez Krc and published by CRC Press. This book was released on 2016-04-19 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices.

Book Emerging Photovoltaic Materials

Download or read book Emerging Photovoltaic Materials written by Santosh K. Kurinec and published by John Wiley & Sons. This book was released on 2018-12-03 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.

Book Emerging Photovoltaic Technologies

Download or read book Emerging Photovoltaic Technologies written by Joel Jean and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Solar photovoltaics (PV) is the fastest-growing energy technology in the world today and an important tool for mitigating climate change. Crystalline silicon PV modules are now affordable, efficient, reliable, and dominant in the global market. So why do researchers and entrepreneurs continue to pursue new PV technologies? This book explores how market forces expose opportunities for new solar technologies. The authors explain how two emerging thin-film PV technologies--metal halide perovskites and colloidal quantum dots--can benefit from rapid scalability, reduced manufacturing and installation costs, and new modes of deployment. This book is targeted at students, early-career researchers, and industry newcomers seeking to maximize their impact in the field of emerging thin-film solar photovoltaics." -- Prové de l'editor.

Book Interface Engineering in Inorganic absorber Nanostructured Solar Cells

Download or read book Interface Engineering in Inorganic absorber Nanostructured Solar Cells written by Katherine Elizabeth Roelofs and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this work is variants on the dye-sensitized solar cell (DSSC) that employ inorganic materials as the light absorber, replacing the organic dye molecules used in DSSCs. Such DSSC-inspired devices are emerging technologies in the broader class of thin film solar cells, and include quantum-dot sensitized solar cells (QDSSCs) and perovskites solar cells (PSCs). Quantum-dot sensitized solar cells employ semiconductor nanocrystals, or quantum dots, as the light absorber. The band gap of quantum dots varies with size, allowing for a tunable absorption onset in these devices, among other benefits. PSCs, in which the absorber is CH3NH3PbI3, or variants thereof, with the perovskites crystal structure, first attracted attention in 2012 and have shown an unprecedented rise in efficiency to current record values of 20.1%. QDSSCs and PSCs can be fabricated completely from solution processed materials that can be low-purity, contrasting favorably with the industrial standard, silicon solar cells, which require expensively-processed, high-purity silicon. This tolerance to defects is partially due to the nanostructured design of some PSCs and all QDSSCs, in which a nanostructured bulk heterojunction is formed between the electron-transport material, the absorber, and the hole-transport material. However, the high interfacial areas involved in such designs leads to high rates of interfacial recombination, causing losses in photocurrent, and limiting device efficiency. In this work, I will present methods to reduce interfacial recombination in these inorganic-absorber nanostructured solar cells though surface modifications. In QDSSCs, these include growing ultra-thin insulating metal oxide films by atomic layer deposition (ALD) at the interface and controlling of the nucleation and growth of the inorganic absorber. These studies provide insight into the working mechanisms of QDSSCs, through a combination of the highly-controlled nature of ALD, where films can be grown a single atomic layer at a time and an interface can be atomically engineered, X-ray absorption measurements of interfacial geometric and electronic structure, and detailed studies of the resulting solar cell performance. I will also detail the use of ALD to grow entire material layers in perovskites solar cells, both ALD TiO2 as the electron-transport material, and ALD NiOx as the hole-transport material. Despite their high efficiencies, PSCs are unstable and rapidly degrade when exposed to moisture or excessive heat. The use of ultra-conformal inorganic layers grown by ALD to cap the perovskites absorber, instead of the currently-employed organic layers, has the potential to improve the stability, and thus efficiency, of perovskites solar cells.

Book Interface and Morphology Engineering in Solution processed Electronic and Optoelectronic Devices

Download or read book Interface and Morphology Engineering in Solution processed Electronic and Optoelectronic Devices written by Sanjib Das (Electrical engineer) and published by . This book was released on 2015 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design. The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, pinhole-free and highly uniform perovskite thin films over large area, which remains a big challenge as of today. In this work, a scalable process, called ultrasonic spray-coating (USC), was thoroughly optimized to deposit dense and uniform perovskite thin films for high-efficiency PSCs. In order to realize high-performance flexible PSCs, a unique photonic curing technique was demonstrated to achieve highly conductive TiO2 as electron transport layer on flexible substrates. Moreover, the effect of processing conditions on perovskite film growth was evaluated and taken into account to increase PCE to more than 15%. In addition, a series of high-performance organic field-effect transistors (OFETs) were fabricated en route to demonstrate the versatility of the USC process. Several different polymer binders were used to modulate the lateral and vertical phase morphologies in OFETs, significantly improving the device performance. In summary, this research provides guidelines for the design and fabrication of high-performance solution-processed solar cells and field-effect transistors based on organic materials and hybrid perovskites, while presenting a viable route for large-scale fabrication.

Book Recent Advances in Thin Film Photovoltaics

Download or read book Recent Advances in Thin Film Photovoltaics written by Udai P. Singh and published by Springer Nature. This book was released on 2022-09-02 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Semiconductor Materials for Solar Photovoltaic Cells

Download or read book Semiconductor Materials for Solar Photovoltaic Cells written by M. Parans Paranthaman and published by Springer. This book was released on 2015-09-16 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry

Book Thin Film Nanophotonics

Download or read book Thin Film Nanophotonics written by Guru Subramanyam and published by Elsevier. This book was released on 2021-08-25 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin Film Nanophotonics: Conclusions from the Third International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors (TFE3S) provides up-to-date coverage of the properties and photonic applications of nanostructured thin films, including discussions on optical waveguides, photonic lattices for wideband reflectors, polarizers, bandpass filters, meta surfaces, plasmonic resonance sensors, smart windows, optical switches, photovoltaics, and many more. This is an important reference source for materials scientists, engineers and physicists working in the areas of nanomaterials and photonics. New thin film applications such as thin-film topological insulators and 2D materials are gaining attention and growing exponentially, hence this book is an ideal reference on how engineered thin films for various nano-photonics applications present exponential growth in a wide array of areas. Focuses on the interaction of photons with nanostructured thin films, nanocrystals, nanowires, semiconductor nanodots and photonic crystals Offers a comprehensive overview of the latest advances in thin-film nanophotonics Discusses how the properties of thin films make them particularly useful for photonic applications