EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Intelligent Thermal Energy Systems

Download or read book Intelligent Thermal Energy Systems written by Cheng Siong Chin and published by . This book was released on 2020-02-04 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers an overview and applications of the thermal storage systems used in batteries for the electric automotive industry such as in electric vehicles, thermal storage system in smart grid systems, thermal harvesting for battery-less use for wireless sensor networks, thermo-electric generators and biomedical sensing. The thermal storage system can be used to harvest energy for implementation of battery-less, zero-maintenance and place-and-forget electronic systems. This book has been prepared for the needs of those who seek an application on developing the thermal system. The choice of material is guided by the basic objective of making an engineer or student capable of dealing with thermal system design. The book can be used as reference book for undergraduate and postgraduate students in the area of thermal system overview, design and applications. Lithium iron phosphate (LiFePO4) batteries have gained significant traction in the electric automotive industry in the recent years mainly due to their high safety performance, flat voltage profile and low cost. Although LiFePO4 batteries have excellent thermal stability, they still suffer from thermal runaway like other lithium-ion type cells. Thermal volatility is a major drawback in the lithium-ion and sufficient knowledge of the thermal distribution and heat generation of the LiFePO4 battery is necessary to avoid catastrophic thermal failure. The first chapter details the thermal analysis of a LiFePO4 battery cell with a latent heat thermal cooling wrap. The model has been developed as a tool to study the cooling effects of the wrap on the battery cell during discharging. The proposed latent heat storage based battery cooling wrap is used to passively manage the heat produced by the cell and absorbing and maintaining the battery temperature within operational temperatures and below thermal runaway temperature. Thermal energy storage (TES) is another important concept of the smart grid systems. For non-renewable, the benefit of TES systems is the improvement of the generation performance by supporting the energy demand during peak hours. Also, TES is often able to improve the system efficiency in a way that is more energy and cost effective. The best-known method for thermal energy storage is by utilizing the latent heat of fusion of energy storage material known as phase change materials (PCM). TES systems are classified into two main categories such as sensible and latent heat storage. An overview of the research on performance improvement are also delineated. Hence, the thermal energy harvesting has indeed gained attention in the last decade due to its promising possibilities in area such as wireless sensor networks (WSN) for wide range of IoT (Internet of Things) applications. Thermal energy scavenging from waste heat can enable implementation of battery-less, zero-maintenance and place-and-forget electronic systems. Scavenging energy from the temperature difference between human body heat and ambiance is an attractive solution for powering wearables for continuous health monitoring, biomedical sensing and body area sensor networks (BASN). The low energy efficiency and low voltage output of the thermo-electric generators (TEG) pose challenges to the deployment of industry ready powering systems"--

Book Intelligent Thermal Energy System  an Overview

Download or read book Intelligent Thermal Energy System an Overview written by Cheng Siong Chin and published by . This book was released on 2020-04-07 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers an overview and applications of the thermal storage systems used in batteries for the electric automotive industry such as in electric vehicles, thermal storage system in smart grid systems, thermal harvesting for battery-less use for wireless sensor networks, thermo-electric generators and biomedical sensing. The thermal storage system can be used to harvest energy for implementation of battery-less, zero-maintenance and place-and-forget electronic systems. This book has been prepared for the needs of those who seek an application on developing the thermal system. The choice of material is guided by the basic objective of making an engineer or student capable of dealing with thermal system design. The book can be used as reference book for undergraduate and postgraduate students in the area of thermal system overview, design and applications. Lithium iron phosphate (LiFePO4) batteries have gained significant traction in the electric automotive industry in the recent years mainly due to their high safety performance, flat voltage profile and low cost. Although LiFePO4 batteries have excellent thermal stability, they still suffer from thermal runaway like other lithium-ion type cells. Thermal volatility is a major drawback in the lithium-ion and sufficient knowledge of the thermal distribution and heat generation of the LiFePO4 battery is necessary to avoid catastrophic thermal failure. The first chapter details the thermal analysis of a LiFePO4 battery cell with a latent heat thermal cooling wrap. The model has been developed as a tool to study the cooling effects of the wrap on the battery cell during discharging. The proposed latent heat storage-based battery cooling wrap is used to passively manage the heat produced by the cell and absorbing and maintaining the battery temperature within operational temperatures and below thermal runaway temperature. Thermal energy storage (TES) is another important concept of the smart grid systems. For non-renewable, the benefit of TES systems is the improvement of the generation performance by supporting the energy demand during peak hours. Also, TES is often able to improve the system efficiency in a way that is more energy and cost effective. The best-known method for thermal energy storage is by utilizing the latent heat of fusion of energy storage material known as phase change materials (PCM). TES systems are classified into two main categories such as sensible and latent heat storage. An overview of the research on performance improvement are also delineated. Hence, the thermal energy harvesting has indeed gained attention in the last decade due to its promising possibilities in area such as wireless sensor networks (WSN) for wide range of IoT (Internet of Things) applications. Thermal energy scavenging from waste heat can enable implementation of battery-less, zero-maintenance and place-and-forget electronic systems. Scavenging energy from the temperature difference between human body heat and ambiance is an attractive solution for powering wearables for continuous health monitoring, biomedical sensing and body area sensor networks (BASN). The low energy efficiency and low voltage output of the thermo-electric generators (TEG) pose challenges to the deployment of industry ready powering systems.

Book Operation  Planning  and Analysis of Energy Storage Systems in Smart Energy Hubs

Download or read book Operation Planning and Analysis of Energy Storage Systems in Smart Energy Hubs written by Behnam Mohammadi-Ivatloo and published by Springer. This book was released on 2018-04-04 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the design and scheduling of residential, industrial, and commercial energy hubs, and their integration into energy storage technologies and renewable energy sources. Each chapter provides theoretical background and application examples for specific power systems including, solar, wind, geothermal, air and hydro. Case-studies are included to provide engineers, researchers, and students with the most modern technical and intelligent approaches to solving power and energy integration problems with special attention given to the environmental and economic aspects of energy storage systems.

Book Modelling  Simulation and Control of Thermal Energy Systems

Download or read book Modelling Simulation and Control of Thermal Energy Systems written by Kwang Y. Lee and published by MDPI. This book was released on 2020-11-03 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.

Book Design of Thermal Energy Systems

Download or read book Design of Thermal Energy Systems written by Pradip Majumdar and published by John Wiley & Sons. This book was released on 2021-06-01 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of Thermal Energy Systems Pradip Majumdar, Northern Illinois University, USA A comprehensive introduction to the design and analysis of thermal energy systems Design of Thermal Energy Systems covers the fundamentals and applications in thermal energy systems and components, including conventional power generation and cooling systems, renewable energy systems, heat recovery systems, heat sinks and thermal management. Practical examples are used throughout and are drawn from solar energy systems, fuel cell and battery thermal management, electrical and electronics cooling, engine exhaust heat and emissions, and manufacturing processes. Recent research topics such as steady and unsteady state simulation and optimization methods are also included. Key features: Provides a comprehensive introduction to the design and analysis of thermal energy systems, covering fundamentals and applications. Includes a wide range of industrial application problems and worked out example problems. Applies thermal analysis techniques to generate design specification and ratings. Demonstrates how to design thermal systems and components to meet engineering specifications. Considers alternative options and allows for the estimation of cost and feasibility of thermal systems. Accompanied by a website including software for design and analysis, a solutions manual, and presentation files with PowerPoint slides. The book is essential reading for: practicing engineers in energy and power industries; consulting engineers in mechanical, electrical and chemical engineering; and senior undergraduate and graduate engineering students.

Book Intelligent Integrated Energy Systems

Download or read book Intelligent Integrated Energy Systems written by Peter Palensky and published by Springer. This book was released on 2018-10-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents research results of PowerWeb, TU Delft’s consortium for interdisciplinary research on intelligent, integrated energy systems and their role in markets and institutions. In operation since 2012, it acts as a host and information platform for a growing number of projects, ranging from single PhD student projects up to large integrated and international research programs. The group acts in an inter-faculty fashion and brings together experts from electrical engineering, computer science, mathematics, mechanical engineering, technology and policy management, control engineering, civil engineering, architecture, aerospace engineering, and industrial design. The interdisciplinary projects of PowerWeb are typically associated with either of three problem domains: Grid Technology, Intelligence and Society. PowerWeb is not limited to electricity: it bridges heat, gas, and other types of energy with markets, industrial processes, transport, and the built environment, serving as a singular entry point for industry to the University’s knowledge. Via its Industry Advisory Board, a steady link to business owners, manufacturers, and energy system operators is provided.

Book Handbook of Clean Energy Systems  6 Volume Set

Download or read book Handbook of Clean Energy Systems 6 Volume Set written by Jinyue Yan and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 4038 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Book Power Electronics in Renewable Energy Systems and Smart Grid

Download or read book Power Electronics in Renewable Energy Systems and Smart Grid written by Bimal K. Bose and published by John Wiley & Sons. This book was released on 2019-08-06 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.

Book Thermal Energy Systems

    Book Details:
  • Author : Ashwani Kumar
  • Publisher : CRC Press
  • Release : 2023-06-30
  • ISBN : 1000891860
  • Pages : 301 pages

Download or read book Thermal Energy Systems written by Ashwani Kumar and published by CRC Press. This book was released on 2023-06-30 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text provides in-depth knowledge about recent advances in solar collector systems, photovoltaic systems, the role of thermal energy systems in buildings, phase change materials, geothermal energy, biofuels, and thermal management systems for EVs in social and industrial applications. It further aims toward the inclusion of innovation and implementation of strategies for CO2 emission reduction through the reduction of energy consumption using conventional sources. This book: Presents the latest advances in the field of thermal energy storage, solar energy development, geothermal energy, and hybrid energy applications for green development. Highlights the importance of innovation and implementation of strategies for CO2 emission reduction through the reduction of energy consumption using sustainable technologies and methods. Discusses design development, life cycle assessment, modelling and simulation of thermal energy systems in detail. Synergize exploration related to the various properties and functionalities through extensive theoretical and numerical modelling present in the energy sector. Explores opportunities, challenges, future perspectives and approaches toward gaining sustainability through renewable energy resources. The text discusses the fundamentals of thermal energy and its applications in a comprehensive manner. It further covers advancements in solar thermal and photovoltaic systems. The text highlights the contribution of geothermal energy conversion systems to sustainable development. It showcases the design and optimization of ground source heat pumps for space conditioning and presents modelling and simulation of the thermal energy systems for design optimization. It will serve as an ideal reference text for senior undergraduate, graduate students and academic researchers in the fields of mechanical engineering, environmental engineering and energy engineering.

Book Integration of Renewable Energy Sources with Smart Grid

Download or read book Integration of Renewable Energy Sources with Smart Grid written by M. Kathiresh and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTEGRATION OF RENEWABLE ENERGY SOURCES WITH SMART GRID Provides comprehensive coverage of renewable energy and its integration with smart grid technologies. This book starts with an overview of renewable energy technologies, smart grid technologies, and energy storage systems and covers the details of renewable energy integration with smart grid and the corresponding controls. It also provides an enhanced perspective on the power scenario in developing countries. The requirement of the integration of smart grid along with the energy storage systems is deeply discussed to acknowledge the importance of sustainable development of a smart city. The methodologies are made quite possible with highly efficient power convertor topologies and intelligent control schemes. These control schemes are capable of providing better control with the help of machine intelligence techniques and artificial intelligence. The book also addresses modern power convertor topologies and the corresponding control schemes for renewable energy integration with smart grid. The design and analysis of power converters that are used for the grid integration of solar PV along with simulation and experimental results are illustrated. The protection aspects of the microgrid with power electronic configurations for wind energy systems are elucidated. The book also discusses the challenges and mitigation measure in renewable energy integration with smart grid. Audience The core audience is hardware and software engineers working on renewable energy integration related projects, microgrids, smart grids and computing algorithms for converter and inverter circuits. Researchers and students in electrical, electronics and computer engineering will also benefit reading the book.

Book Thermal Energy Storage Using Phase Change Materials

Download or read book Thermal Energy Storage Using Phase Change Materials written by Amy S. Fleischer and published by Springer. This book was released on 2015-06-22 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

Book Thermal Energy Storage

    Book Details:
  • Author : Ibrahim Dinçer
  • Publisher : John Wiley & Sons
  • Release : 2011-06-24
  • ISBN : 1119956625
  • Pages : 585 pages

Download or read book Thermal Energy Storage written by Ibrahim Dinçer and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability of thermal energy storage (TES) systems to facilitate energy savings, renewable energy use and reduce environmental impact has led to a recent resurgence in their interest. The second edition of this book offers up-to-date coverage of recent energy efficient and sustainable technological methods and solutions, covering analysis, design and performance improvement as well as life-cycle costing and assessment. As well as having significantly revised the book for use as a graduate text, the authors address real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and practical applications of thermal energy storage technology. Beginning with a general summary of thermodynamics, fluid mechanics and heat transfer, this book goes on to discuss practical applications with chapters that include TES systems, environmental impact, energy savings, energy and exergy analyses, numerical modeling and simulation, case studies and new techniques and performance assessment methods.

Book Handbook of Smart Energy Systems

Download or read book Handbook of Smart Energy Systems written by Michel Fathi and published by Springer Nature. This book was released on 2023-08-04 with total page 3382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook analyzes and develops methods and models to optimize solutions for energy access (for industry and the general world population alike) in terms of reliability and sustainability. With a focus on improving the performance of energy systems, it brings together state-of-the-art research on reliability enhancement, intelligent development, simulation and optimization, as well as sustainable development of energy systems. It helps energy stakeholders and professionals learn the methodologies needed to improve the reliability of energy supply-and-demand systems, achieve more efficient long-term operations, deal with uncertainties in energy systems, and reduce energy emissions. Highlighting novel models and their applications from leading experts in this important area, this book will appeal to researchers, students, and engineers in the various domains of smart energy systems and encourage them to pursue research and development in this exciting and highly relevant field.

Book Intelligent Control in Energy Systems

Download or read book Intelligent Control in Energy Systems written by Anastasios Dounis and published by MDPI. This book was released on 2019-08-26 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted technical articles as well as one editorial. Authors from 15 countries (China, Netherlands, Spain, Tunisia, United Sates of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico, and the Czech Republic) elaborate on several aspects of intelligent control in energy systems. The book covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking, neural networks for fuel cell control and dynamic optimization of energy management, adaptive control on power systems, hierarchical Petri Nets in microgrid management, model predictive control for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power consumption forecasting, decision trees for wind systems, risk analysis for demand side management, finite state automata for HVAC control, robust μ-synthesis for microgrids, and neuro-fuzzy systems in energy storage.

Book Energy Storage for Modern Power System Operations

Download or read book Energy Storage for Modern Power System Operations written by Sandeep Dhundhara and published by John Wiley & Sons. This book was released on 2021-10-19 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: ENERGY STORAGE for MODERN POWER SYSTEM OPERATIONS Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges for modern power systems for engineers, researchers, academicians, industry professionals, consultants, and designers. Energy storage systems have been recognized as the key elements in modern power systems, where they are able to provide primary and secondary frequency controls, voltage regulation, power quality improvement, stability enhancement, reserve service, peak shaving, and so on. Particularly, deployment of energy storage systems in a distributed manner will contribute greatly in the development of smart grids and providing promising solutions for the above issues. The main challenges will be the adoption of new techniques and strategies for the optimal planning, control, monitoring and management of modern power systems with the wide installation of distributed energy storage systems. Thus, the aim of this book is to illustrate the potential of energy storage systems in different applications of modern power systems, with a view toward illuminating recent advances and research trends in storage technologies. This exciting new volume covers the recent advancements and applications of different energy storage technologies that are useful to engineers, scientists, and students in the discipline of electrical engineering. Suitable for the engineers at power companies and energy storage consultants working in the energy storage field, this book offers a cross-disciplinary look across electrical, mechanical, chemical and renewable engineering aspects of energy storage. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Electrical engineers and other designers, engineers, and scientists working in energy storage

Book Highly Efficient Thermal Renewable Energy Systems

Download or read book Highly Efficient Thermal Renewable Energy Systems written by Vikas Verma and published by CRC Press. This book was released on 2024-05-21 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text comprehensively highlights the latest methodologies, models, techniques, and applications along with a description of modeling, optimization, and experimental works in the energy sector. It further explains key concepts such as finite element analysis tools, hybrid energy systems, mechanical components design, and optimization, solar coupled systems, and vertical heat exchanger. This book • Discusses the role and integration of solar, geothermal, and hydrogen‐based thermal energy storage (TES) technologies in different sectors for space heating and cooling applications. • Covers mechanical modeling and optimization of hybrid energy storage systems for performance improvement and focuses on hydrogen production, storage, and safety measures. • Explores the integration of IoT and global energy interaction technologies, highlighting their potential benefits in driving the transition toward a sustainable and resilient global energy system. • Explains different aspects of clean technologies such as batteries, fuel cells, ground energy storage, solar thermal system, and the role of green hydrogen in decarbonizing sectors like transportation and energy. • Showcases a clear idea of sustainable development using renewable energy, focusing on policymaking, challenges in transition from conventional to renewable energy, and future directions in energy sector. It is primarily written for senior undergraduates and graduate students, and academic researchers in the fields of mechanical engineering, production engineering, industrial engineering, and environmental engineering.

Book Human Interaction  Emerging Technologies and Future Systems V

Download or read book Human Interaction Emerging Technologies and Future Systems V written by Tareq Ahram and published by Springer Nature. This book was released on 2021-09-09 with total page 1316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on research and developments in human–technology interaction. A special emphasis is given to human–computer interaction and its implementation for a wide range of purposes such as health care, aerospace, telecommunication, and education, among others. The human aspects are analyzed in detail. Timely studies on human-centered design, wearable technologies, social and affective computing, augmented, virtual and mixed reality simulation, human rehabilitation, and biomechanics represent the core of the book. Emerging technology applications in business, security, and infrastructure are also critically examined, thus offering a timely, scientifically grounded, but also professionally oriented snapshot of the current state of the field. The book gathers contributions presented at the 5th International Conference on Human Interaction and Emerging Technologies (IHIET 2021, August 27–29, 2021) and the 6th International Conference on Human Interaction and Emerging Technologies: Future Systems (IHIET-FS 2021, October 28–30, 2021), held virtually from France. It offers a timely survey and a practice-oriented reference guide to researchers and professionals dealing with design, systems engineering, and management of the next-generation technology and service systems.