EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Integrable Techniques for One Dimensional Quantum Systems

Download or read book An Introduction to Integrable Techniques for One Dimensional Quantum Systems written by Fabio Franchini and published by Springer. This book was released on 2017-05-25 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.

Book Exactly Solved Models in Statistical Mechanics

Download or read book Exactly Solved Models in Statistical Mechanics written by Rodney J. Baxter and published by Elsevier. This book was released on 2016-06-12 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exactly Solved Models in Statistical Mechanics

Book Elements of Classical and Quantum Integrable Systems

Download or read book Elements of Classical and Quantum Integrable Systems written by Gleb Arutyunov and published by Springer. This book was released on 2019-07-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

Book Integrable Systems  From Classical to Quantum

Download or read book Integrable Systems From Classical to Quantum written by John P. Harnad and published by American Mathematical Soc.. This book was released on 2000 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the papers based upon lectures given at the 1999 Séminaire de Mathémathiques Supérieurs held in Montreal. It includes contributions from many of the most active researchers in the field. This subject has been in a remarkably active state of development throughout the past three decades, resulting in new motivation for study in r s3risingly different directions. Beyond the intrinsic interest in the study of integrable models of many-particle systems, spin chains, lattice and field theory models at both the classical and the quantum level, and completely solvable models in statistical mechanics, there have been new applications in relation to a number of other fields of current interest. These fields include theoretical physics and pure mathematics, for example the Seiberg-Witten approach to supersymmetric Yang-Mills theory, the spectral theory of random matrices, topological models of quantum gravity, conformal field theory, mirror symmetry, quantum cohomology, etc. This collection gives a nice cross-section of the current state of the work in the area of integrable systems which is presented by some of the leading active researchers in this field. The scope and quality of the articles in this volume make this a valuable resource for those interested in an up-to-date introduction and an overview of many of the main areas of study in the theory of integral systems.

Book Thermodynamics of One Dimensional Solvable Models

Download or read book Thermodynamics of One Dimensional Solvable Models written by Minoru Takahashi and published by Cambridge University Press. This book was released on 1999-03-28 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exactly solvable models are very important in physics from a theoretical point of view and also from the experimentalist's perspective, because in such cases theoretical results and experimental results can be compared without ambiguity. This is a book about an important class of exactly solvable models in physics. The subject area is the Bethe-ansatz approach for a number of one-dimensional models, and the setting up of equations within this approach to determine the thermodynamics of these systems. It is a topic that crosses the boundaries among condensed matter physics, mathematics and field theory. The derivation and application of thermodynamic Bethe-ansatz equations for one-dimensional models are explained in detail. This technique is indispensable for physicists studying the low-temperature properties of one-dimensional substances. Written by the originator of much of the work in the subject, this book will be of great interest to theoretical condensed matter physicists.

Book Quantum Inverse Scattering Method and Correlation Functions

Download or read book Quantum Inverse Scattering Method and Correlation Functions written by V. E. Korepin and published by Cambridge University Press. This book was released on 1997-03-06 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.

Book Representation Theory  Mathematical Physics  and Integrable Systems

Download or read book Representation Theory Mathematical Physics and Integrable Systems written by Anton Alekseev and published by Birkhäuser. This book was released on 2022-02-05 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.

Book Statistical Field Theory

Download or read book Statistical Field Theory written by G. Mussardo and published by Oxford University Press, USA. This book was released on 2010 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and pedagogical introduction to phase transitions and exactly solved models in statistical physics and quantum field theory.

Book Yang Baxter Equation in Integrable Systems

Download or read book Yang Baxter Equation in Integrable Systems written by Michio Jimbo and published by World Scientific. This book was released on 1990 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions.

Book Introduction to the Statistical Physics of Integrable Many body Systems

Download or read book Introduction to the Statistical Physics of Integrable Many body Systems written by Ladislav Šamaj and published by Cambridge University Press. This book was released on 2013-05-16 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: Including topics not traditionally covered in literature, such as (1+1)-dimensional QFT and classical 2D Coulomb gases, this book considers a wide range of models and demonstrates a number of situations to which they can be applied. Beginning with a treatise of nonrelativistic 1D continuum Fermi and Bose quantum gases of identical spinless particles, the book describes the quantum inverse scattering method and the analysis of the related Yang–Baxter equation and integrable quantum Heisenberg models. It also discusses systems within condensed matter physics, the complete solution of the sine-Gordon model and modern trends in the thermodynamic Bethe ansatz. Each chapter concludes with problems and solutions to help consolidate the reader's understanding of the theory and its applications. Basic knowledge of quantum mechanics and equilibrium statistical physics is assumed, making this book suitable for graduate students and researchers in statistical physics, quantum mechanics and mathematical and theoretical physics.

Book Cellular Automata

    Book Details:
  • Author : Howard Gutowitz
  • Publisher : MIT Press
  • Release : 1991
  • ISBN : 9780262570862
  • Pages : 510 pages

Download or read book Cellular Automata written by Howard Gutowitz and published by MIT Press. This book was released on 1991 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.

Book Off Diagonal Bethe Ansatz for Exactly Solvable Models

Download or read book Off Diagonal Bethe Ansatz for Exactly Solvable Models written by Yupeng Wang and published by Springer. This book was released on 2015-04-21 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.

Book Exact Methods in Low dimensional Statistical Physics and Quantum Computing

Download or read book Exact Methods in Low dimensional Statistical Physics and Quantum Computing written by Stephane Ouvry and published by Oxford University Press. This book was released on 2010-04-22 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional statistical models are instrumental in improving our understanding of emerging fields, such as quantum computing and cryptography, complex systems, and quantum fluids. This book of lectures by international leaders in the field sets these issues into a larger and more coherent theoretical perspective than is currently available.

Book Statistical Mechanics of Lattice Systems

Download or read book Statistical Mechanics of Lattice Systems written by Sacha Friedli and published by Cambridge University Press. This book was released on 2017-11-23 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.

Book Symmetries and Integrability of Difference Equations

Download or read book Symmetries and Integrability of Difference Equations written by Decio Levi and published by Springer. This book was released on 2017-06-30 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.

Book Hypergeometry  Integrability and Lie Theory

Download or read book Hypergeometry Integrability and Lie Theory written by Erik Koelink and published by American Mathematical Soc.. This book was released on 2022-08-30 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.

Book Yang baxter Equation In Integrable Systems

Download or read book Yang baxter Equation In Integrable Systems written by Michio Jimbo and published by World Scientific. This book was released on 1990-03-01 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions./a