Download or read book Integrability and Nonintegrability of Dynamical Systems written by Alain Goriely and published by World Scientific. This book was released on 2001 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems). As generic systems of differential equations cannot be exactly solved, the book reviews the different notions of nonintegrability and shows how to prove the nonexistence of exact solutions and/or a constant of motion. Finally, nonintegrability theory is linked to dynamical systems theory by showing how the property of complete integrability, partial integrability or nonintegrability can be related to regular and irregular dynamics in phase space.
Download or read book Integrable Hamiltonian Systems written by A.V. Bolsinov and published by CRC Press. This book was released on 2004-02-25 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors,
Download or read book Mathematical Aspects of Classical and Celestial Mechanics written by Vladimir I. Arnold and published by Springer Science & Business Media. This book was released on 2007-07-05 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.
Download or read book Differential Galois Theory and Non Integrability of Hamiltonian Systems written by Juan J. Morales Ruiz and published by Birkhäuser. This book was released on 2012-12-06 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)
Download or read book Symplectic Geometry of Integrable Hamiltonian Systems written by Michèle Audin and published by Birkhäuser. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. This book serves as an introduction to symplectic and contact geometry for graduate students, exploring the underlying geometry of integrable Hamiltonian systems. Includes exercises designed to complement the expositiont, and up-to-date references.
Download or read book What Is Integrability written by Vladimir E. Zakharov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of devoting a complete book to this topic was born at one of the Workshops on Nonlinear and Turbulent Processes in Physics taking place reg ularly in Kiev. With the exception of E. D. Siggia and N. Ercolani, all authors of this volume were participants at the third of these workshops. All of them were acquainted with each other and with each other's work. Yet it seemed to be somewhat of a discovery that all of them were and are trying to understand the same problem - the problem of integrability of dynamical systems, primarily Hamiltonian ones with an infinite number of degrees of freedom. No doubt that they (or to be more exact, we) were led to this by the logical process of scientific evolution which often leads to independent, almost simultaneous discoveries. Integrable, or, more accurately, exactly solvable equations are essential to theoretical and mathematical physics. One could say that they constitute the "mathematical nucleus" of theoretical physics whose goal is to describe real clas sical or quantum systems. For example, the kinetic gas theory may be considered to be a theory of a system which is trivially integrable: the system of classical noninteracting particles. One of the main tasks of quantum electrodynamics is the development of a theory of an integrable perturbed quantum system, namely, noninteracting electromagnetic and electron-positron fields.
Download or read book Lectures on Integrable Systems written by Jens Hoppe and published by Springer Science & Business Media. This book was released on 2008-09-15 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mainly drawing on explicit examples, the author introduces the reader to themost recent techniques to study finite and infinite dynamical systems. Without any knowledge of differential geometry or lie groups theory the student can follow in a series of case studies the most recent developments. r-matrices for Calogero-Moser systems and Toda lattices are derived. Lax pairs for nontrivial infinite dimensionalsystems are constructed as limits of classical matrix algebras. The reader will find explanations of the approach to integrable field theories, to spectral transform methods and to solitons. New methods are proposed, thus helping students not only to understand established techniques but also to interest them in modern research on dynamical systems.
Download or read book Integrable And Superintegrable Systems written by Boris A Kuperschmidt and published by World Scientific. This book was released on 1990-10-25 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.
Download or read book Chaos and Integrability in Nonlinear Dynamics written by Michael Tabor and published by Wiley-Interscience. This book was released on 1989-01-18 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the newer field of chaos in nonlinear dynamics as a natural extension of classical mechanics as treated by differential equations. Employs Hamiltonian systems as the link between classical and nonlinear dynamics, emphasizing the concept of integrability. Also discusses nonintegrable dynamics, the fundamental KAM theorem, integrable partial differential equations, and soliton dynamics.
Download or read book The Problem of Integrable Discretization written by Yuri B. Suris and published by Birkhäuser. This book was released on 2012-12-06 with total page 1078 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exploration of the theory of discrete integrable systems, with an emphasis on the following general problem: how to discretize one or several of independent variables in a given integrable system of differential equations, maintaining the integrability property? This question (related in spirit to such a modern branch of numerical analysis as geometric integration) is treated in the book as an immanent part of the theory of integrable systems, also commonly termed as the theory of solitons. Most of the results are only available from recent journal publications, many of them are new. Thus, the book is a kind of encyclopedia on discrete integrable systems. It unifies the features of a research monograph and a handbook. It is supplied with an extensive bibliography and detailed bibliographic remarks at the end of each chapter. Largely self-contained, it will be accessible to graduate and post-graduate students as well as to researchers in the area of integrable dynamical systems.
Download or read book Integrable Systems written by N.J. Hitchin and published by Oxford University Press, USA. This book was released on 2013-03-14 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors, this book has its origins in a lecture series given by the internationally renowned authors. Written in an accessible, informal style, it fills a gap in the existing literature.
Download or read book Fifty Years of Mathematical Physics written by Molin Ge and published by World Scientific Publishing Company. This book was released on 2016-02-16 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.
Download or read book Integrable and Superintegrable Systems written by Boris A. Kupershmidt and published by World Scientific. This book was released on 1990 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.
Download or read book Hamiltonian Systems and Their Integrability written by Mich'le Audin and published by American Mathematical Soc.. This book was released on 2008 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book presents some modern techniques in the theory of integrable systems viewed as variations on the theme of action-angle coordinates. These techniques include analytical methods coming from the Galois theory of differential equations, as well as more classical algebro-geometric methods related to Lax equations. This book would be suitable for a graduate course in Hamiltonian systems."--BOOK JACKET.
Download or read book Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems written by Antonio Giorgilli and published by Cambridge University Press. This book was released on 2022-05-05 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Download or read book Geometric Formulation of Classical and Quantum Mechanics written by G. Giachetta and published by World Scientific. This book was released on 2011 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.
Download or read book Differential Geometry and Integrable Systems written by Martin A. Guest and published by American Mathematical Soc.. This book was released on 2002 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.