EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Integer Points in Polyhedra

Download or read book Integer Points in Polyhedra written by Alexander Barvinok and published by European Mathematical Society. This book was released on 2008 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained exposition of several core aspects of the theory of rational polyhedra with a view towards algorithmic applications to efficient counting of integer points, a problem arising in many areas of pure and applied mathematics. The approach is based on the consistent development and application of the apparatus of generating functions and the algebra of polyhedra. Topics range from classical, such as the Euler characteristic, continued fractions, Ehrhart polynomial, Minkowski Convex Body Theorem, and the Lenstra-Lenstra-Lovasz lattice reduction algorithm, to recent advances such as the Berline-Vergne local formula. The text is intended for graduate students and researchers. Prerequisites are a modest background in linear algebra and analysis as well as some general mathematical maturity. Numerous figures, exercises of varying degree of difficulty as well as references to the literature and publicly available software make the text suitable for a graduate course.

Book Integer Points in Polyhedra    Geometry  Number Theory  Representation Theory  Algebra  Optimization  Statistics

Download or read book Integer Points in Polyhedra Geometry Number Theory Representation Theory Algebra Optimization Statistics written by Matthias Beck and published by American Mathematical Soc.. This book was released on 2008 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The AMS-IMS-SIAM Joint Summer Research Conference "Integer Points in Polyhedra--Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics" was held in Snowbird, Utah in June 2006. This proceedings volume contains research and survey articles originating from the conference. The volume is a cross section of recent advances connected to lattice-point questions. Similar to the talks given at the conference, topics range from commutative algebra to optimization, from discrete geometry to statistics, from mirror symmetry to geometry of numbers. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields." -- Back cover.

Book Computing the Continuous Discretely

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer. This book was released on 2015-11-14 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE

Book Integer Points in Polyhedra    Geometry  Number Theory  Algebra  Optimization

Download or read book Integer Points in Polyhedra Geometry Number Theory Algebra Optimization written by Alexander Barvinok and published by American Mathematical Soc.. This book was released on 2005 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The AMS-IMS-SIAM Summer Research Conference on Integer Points in Polyhedra took place in Snowbird (UT). This proceedings volume contains original research and survey articles stemming from that event. Topics covered include commutative algebra, optimization, discrete geometry, statistics, representation theory, and symplectic geometry. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields.

Book Integer Points in Polyhedra     Geometry  Number Theory  Algebra  Optimization

Download or read book Integer Points in Polyhedra Geometry Number Theory Algebra Optimization written by and published by American Mathematical Soc.. This book was released on 2005 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computing the Continuous Discretely

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart's theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler-Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: "You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics." -- MAA Reviews "The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography." -- Zentralblatt MATH "This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron." -- Mathematical Reviews "Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course." -- CHOICE.

Book Computing the Continuous Discretely

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer Science & Business Media. This book was released on 2007-11-27 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook illuminates the field of discrete mathematics with examples, theory, and applications of the discrete volume of a polytope. The authors have weaved a unifying thread through basic yet deep ideas in discrete geometry, combinatorics, and number theory. We encounter here a friendly invitation to the field of "counting integer points in polytopes", and its various connections to elementary finite Fourier analysis, generating functions, the Frobenius coin-exchange problem, solid angles, magic squares, Dedekind sums, computational geometry, and more. With 250 exercises and open problems, the reader feels like an active participant.

Book 50 Years of Integer Programming 1958 2008

Download or read book 50 Years of Integer Programming 1958 2008 written by Michael Jünger and published by Springer Science & Business Media. This book was released on 2009-11-06 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community. Useful for anyone in mathematics, computer science and operations research, this book exposes mathematical optimization, specifically integer programming and combinatorial optimization, to a broad audience.

Book A Course in Convexity

    Book Details:
  • Author : Alexander Barvinok
  • Publisher : American Mathematical Soc.
  • Release : 2002-11-19
  • ISBN : 0821829688
  • Pages : 378 pages

Download or read book A Course in Convexity written by Alexander Barvinok and published by American Mathematical Soc.. This book was released on 2002-11-19 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.

Book New Perspectives in Algebraic Combinatorics

Download or read book New Perspectives in Algebraic Combinatorics written by Louis J. Billera and published by Cambridge University Press. This book was released on 1999-09-28 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text contains expository contributions by respected researchers on the connections between algebraic geometry, topology, commutative algebra, representation theory, and convex geometry.

Book Computing the Continuous Discretely

Download or read book Computing the Continuous Discretely written by Matthias Beck and published by Springer. This book was released on 2008-11-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook illuminates the field of discrete mathematics with examples, theory, and applications of the discrete volume of a polytope. The authors have weaved a unifying thread through basic yet deep ideas in discrete geometry, combinatorics, and number theory. We encounter here a friendly invitation to the field of "counting integer points in polytopes", and its various connections to elementary finite Fourier analysis, generating functions, the Frobenius coin-exchange problem, solid angles, magic squares, Dedekind sums, computational geometry, and more. With 250 exercises and open problems, the reader feels like an active participant.

Book Geometric Algorithms and Combinatorial Optimization

Download or read book Geometric Algorithms and Combinatorial Optimization written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Book Maximal Lattice Free Polyhedra in Mixed Integer Cutting Plane Theory

Download or read book Maximal Lattice Free Polyhedra in Mixed Integer Cutting Plane Theory written by Christian Wagner and published by Cuvillier Verlag. This book was released on 2011-11-15 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis deals with the generation, evaluation, and analysis of cutting planes for mixed-integer linear programs (MILP's). Such optimization problems involve finitely many variables, some of which are required to be integer. The aim is to maximize or minimize a linear objective function over a set of finitely many linear equations and inequalities. Many industrial problems can be formulated as MILP's. The presence of both, discrete and continuous variables, makes it difficult to solve MILP's algorithmically. The currently available algorithms fail to solve many real-life problems in acceptable time or can only provide heuristic solutions. As a consequence, there is an ongoing interest in novel solution techniques. A standard approach to solve MILP's is to apply cutting plane methods. Here, the underlying MILP is used to construct a sequence of linear programs whose formulations are improved by successively adding linear constraints – so-called cutting planes – until one of the linear programs has an optimal solution which satisfies the integrality conditions on the integer constrained variables. For many combinatorial problems, it is possible to immediately deduce several families of cutting planes by exploiting the inherent combinatorial structure of the problem. However, for general MILP's, no structural properties can be used. The generation of cutting planes must rather be based on the objective function and the given, unstructured set of linear equations and inequalities. On the one hand, this makes the derivation of strong cutting planes for general MILP's more difficult than the derivation of cutting planes for structured problems. On the other hand, for this very reason, the analysis of cutting plane generation for general MILP's becomes mathematically interesting. This thesis presents an approach to generate cutting planes for a general MILP. The cutting planes are obtained from lattice-free polyhedra, that is polyhedra without interior integer point. The point of departure is an optimal solution of the linear programming relaxation of the underlying MILP. By considering multiple rows of an associated simplex tableau, a further relaxation is derived. The first part of this thesis is dedicated to the analysis of this relaxation and it is shown how cutting planes for the general MILP can be deduced from the considered relaxation. It turns out that the generated cutting planes have a geometric interpretation in the space of the discrete variables. In particular, it is shown that the strongest cutting planes which can be derived from the considered relaxation correspond to maximal lattice-free polyhedra. As a result, problems on cutting planes are transferable into problems on maximal lattice-free polyhedra. The second part of this thesis addresses the evaluation of the generated cutting planes. It is shown that the cutting planes which are important, are at the same time the cutting planes which are difficult to derive in the sense that they correspond to highly complex maximal lattice-free polyhedra. In addition, it is shown that under certain assumptions on the underlying system of linear equations and inequalities, the important cutting planes can be approximated with cutting planes which correspond to less complex maximal lattice-free polyhedra. A probabilistic model is used to complement the analysis. Moreover, a geometric interpretation of the results is given. The third part of this thesis focuses on the analysis of lattice-free polyhedra. In particular, the class of lattice-free integral polyhedra is investigated, a class which is important within a cutting plane framework. Two different notions of maximality are introduced. It is distinguished into the class of lattice-free integral polyhedra which are not properly contained in another lattice-free integral polyhedron, and the class of lattice-free integral polyhedra which are not properly contained in another lattice-free convex set. Both classes are analyzed, especially with respect to the properties of their representatives and the relation between the two classes. It is shown that both classes are of large cardinality and that they contain very large elements. For the second as well as the third part of this thesis, statements about two-dimensional lattice-free convex sets are needed. For that reason, the fourth part of this thesis is devoted to the derivation of these results.

Book Existence of Unimodular Triangulations   Positive Results

Download or read book Existence of Unimodular Triangulations Positive Results written by Christian Haase and published by American Mathematical Soc.. This book was released on 2021-07-21 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.

Book Combinatorics and Complexity of Partition Functions

Download or read book Combinatorics and Complexity of Partition Functions written by Alexander Barvinok and published by Springer. This book was released on 2017-03-13 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.

Book Theory of Linear and Integer Programming

Download or read book Theory of Linear and Integer Programming written by Alexander Schrijver and published by John Wiley & Sons. This book was released on 1998-06-11 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Als Ergänzung zu den mehr praxisorientierten Büchern, die auf dem Gebiet der linearen und Integerprogrammierung bereits erschienen sind, beschreibt dieses Werk die zugrunde liegende Theorie und gibt einen Überblick über wichtige Algorithmen. Der Autor diskutiert auch Anwendungen auf die kombinatorische Optimierung; neben einer ausführlichen Bibliographie finden sich umfangreiche historische Anmerkungen.

Book Polyhedral Computation

Download or read book Polyhedral Computation written by David Avis and published by American Mathematical Soc.. This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many polytopes of practical interest have enormous output complexity and are often highly degenerate, posing severe difficulties for known general-purpose algorithms. They are, however, highly structured, and attention has turned to exploiting this structure, particularly symmetry. Initial applications of this approach have permitted computations previously far out of reach, but much remains to be understood and validated experimentally. The papers in this volume give a good snapshot of the ideas discussed at a Workshop on Polyhedral Computation held at the CRM in Montreal in October 2006 and, with one exception, the current state of affairs in this area. The exception is the inclusion of an often cited 1980 technical report of Norman Zadeh, which was never published in a journal and has passed into the folklore of the discipline. This paper illustrates beautifully the work still to be done in the field: it gives a simple pivot rule for the simplex method for which it is still unknown if it yields a polynomial time algorithm.