EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Infinite Dimensional Harmonic Analysis Iii   Proceedings Of The Third German japanese Symposium

Download or read book Infinite Dimensional Harmonic Analysis Iii Proceedings Of The Third German japanese Symposium written by Kimiaki Saito and published by World Scientific. This book was released on 2005-11-09 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributions on recent results in infinite dimensional harmonic analysis and its applications to probability theory. Some papers deal with purely analytic topics such as Frobenius reciprocity, diffeomorphism groups, equivariant fibrations and Harish-Chandra modules. Several other papers touch upon stochastic processes, in particular Lévy processes. The majority of the contributions emphasize on the algebraic-topological aspects of the theory by choosing configuration spaces, locally compact groups and hypergroups as their basic structures. The volume provides a useful survey of innovative work pertaining to a highly actual section of modern analysis in its pure and applied shapings.

Book Infinite Dimensional Harmonic Analysis Iv  On The Interplay Between Representation Theory  Random Matrices  Special Functions  And Probability   Proceedings Of The Fourth German japanese Symposium

Download or read book Infinite Dimensional Harmonic Analysis Iv On The Interplay Between Representation Theory Random Matrices Special Functions And Probability Proceedings Of The Fourth German japanese Symposium written by Joachim Hilgert and published by World Scientific. This book was released on 2008-11-26 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourth Conference on Infinite Dimensional Harmonic Analysis brought together experts in harmonic analysis, operator algebras and probability theory. Most of the articles deal with the limit behavior of systems with many degrees of freedom in the presence of symmetry constraints. This volume gives new directions in research bringing together probability theory and representation theory.

Book Proceedings of the Fourth German Japanese Symposium  Infinite Dimensional Harmonic Analysis IV

Download or read book Proceedings of the Fourth German Japanese Symposium Infinite Dimensional Harmonic Analysis IV written by Joachim Hilgert and published by World Scientific. This book was released on 2009 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourth Conference on Infinite Dimensional Harmonic Analysis brought together experts in harmonic analysis, operator algebras and probability theory. Most of the articles deal with the limit behavior of systems with many degrees of freedom in the presence of symmetry constraints. This volume gives new directions in research bringing together probability theory and representation theory.

Book Introduction to Infinite Dimensional Stochastic Analysis

Download or read book Introduction to Infinite Dimensional Stochastic Analysis written by Zhi-yuan Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).

Book Infinite dimensional Analysis  Operators In Hilbert Space  Stochastic Calculus Via Representations  And Duality Theory

Download or read book Infinite dimensional Analysis Operators In Hilbert Space Stochastic Calculus Via Representations And Duality Theory written by Palle Jorgensen and published by World Scientific. This book was released on 2021-01-15 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.

Book Infinite Dimensional Stochastic Analysis

Download or read book Infinite Dimensional Stochastic Analysis written by Hui-Hsiung Kuo and published by World Scientific. This book was released on 2008 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains current work at the frontiers of research in infinite dimensional stochastic analysis. It presents a carefully chosen collection of articles by experts to highlight the latest developments in white noise theory, infinite dimensional transforms, quantum probability, stochastic partial differential equations, and applications to mathematical finance. Included in this volume are expository papers which will help increase communication between researchers working in these areas. The tools and techniques presented here will be of great value to research mathematicians, graduate students and applied mathematicians. Sample Chapter(s). Complex White Noise and the Infinite Dimensional Unitary Group (425 KB). Contents: Complex White Noise and the Infinite Dimensional Unitary Group (T Hida); Complex It Formulas (M Redfern); White Noise Analysis: Background and a Recent Application (J Becnel & A N Sengupta); Probability Measures with Sub-Additive Principal SzegAOCoJacobi Parameters (A Stan); Donsker''s Functional Calculus and Related Questions (P-L Chow & J Potthoff); Stochastic Analysis of Tidal Dynamics Equation (U Manna et al.); Adapted Solutions to the Backward Stochastic NavierOCoStokes Equations in 3D (P Sundar & H Yin); Spaces of Test and Generalized Functions of Arcsine White Noise Formulas (A Barhoumi et al.); An Infinite Dimensional Fourier-Mehler Transform and the L(r)vy Laplacian (K Saito & K Sakabe); The Heat Operator in Infinite Dimensions (B C Hall); Quantum Stochastic Dilation of Symmetric Covariant Completely Positive Semigroups with Unbounded Generator (D Goswami & K B Sinha); White Noise Analysis in the Theory of Three-Manifold Quantum Invariants (A Hahn); A New Explicit Formula for the Solution of the BlackOCoMertonOCoScholes Equation (J A Goldstein et al.); Volatility Models of the Yield Curve (V Goodman). Readership: Graduate-level researchers in stochastic analysis, mathematical physics and financial mathematic

Book Developments and Trends in Infinite Dimensional Lie Theory

Download or read book Developments and Trends in Infinite Dimensional Lie Theory written by Karl-Hermann Neeb and published by Springer Science & Business Media. This book was released on 2010-10-17 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.

Book Complex Analysis on Infinite Dimensional Spaces

Download or read book Complex Analysis on Infinite Dimensional Spaces written by Sean Dineen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite dimensional holomorphy is the study of holomorphic or analytic func tions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself ini tially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suit able material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book.

Book Infinite Dimensional Harmonic Analysis III

Download or read book Infinite Dimensional Harmonic Analysis III written by Herbert Heyer and published by World Scientific Publishing Company. This book was released on 2005 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributions on recent results in infinite dimensional harmonic analysis and its applications to probability theory. Some papers deal with purely analytic topics such as Frobenius reciprocity, diffeomorphism groups, equivariant fibrations and Harish-Chandra modules. Several other papers touch upon stochastic processes, in particular Lévy processes. The majority of the contributions emphasize on the algebraic-topological aspects of the theory by choosing configuration spaces, locally compact groups and hypergroups as their basic structures. The volume provides a useful survey of innovative work pertaining to a highly actual section of modern analysis in its pure and applied shapings.

Book An Introduction to Harmonic Analysis on Semisimple Lie Groups

Download or read book An Introduction to Harmonic Analysis on Semisimple Lie Groups written by V. S. Varadarajan and published by Cambridge University Press. This book was released on 1999-07-22 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in paperback, this graduate-level textbook is an introduction to the representation theory of semi-simple Lie groups. As such, it will be suitable for research students in algebra and analysis, and for research mathematicians requiring a readable account of the topic. The author emphasizes the development of the central themes of the sunject in the context of special examples, without losing sight of its general flow and structure. The book concludes with appendices sketching some basic topics with a comprehensive guide to further reading.

Book Geometric and Harmonic Analysis on Homogeneous Spaces and Applications

Download or read book Geometric and Harmonic Analysis on Homogeneous Spaces and Applications written by Ali Baklouti and published by Springer Nature. This book was released on 2021-10-29 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects a series of important works on noncommutative harmonic analysis on homogeneous spaces and related topics. All the authors participated in the 6th Tunisian-Japanese conference "Geometric and Harmonic Analysis on homogeneous spaces and Applications" held at Djerba Island in Tunisia during the period of December 16-19, 2019. The aim of this conference and the five preceding Tunisian-Japanese meetings was to keep up with the active development of representation theory interrelated with various other mathematical fields, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations, and mathematical physics. The present volume is dedicated to the memory of Takaaki Nomura, who organized the series of Tunisian-Japanese conferences with great effort and enthusiasm. The book is a valuable resource for researchers and students working in various areas of analysis, geometry, and algebra in connection with representation theory.

Book Geometric and Harmonic Analysis on Homogeneous Spaces

Download or read book Geometric and Harmonic Analysis on Homogeneous Spaces written by Ali Baklouti and published by Springer Nature. This book was released on 2019-08-31 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5th Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations.

Book Commutative Harmonic Analysis III

Download or read book Commutative Harmonic Analysis III written by V.P. Havin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at readers who have learned the principles of harmonic analysis, this book provides a variety of perspectives on this very important classical subject. The authors have written a truly outstanding book which distinguishes itself by its excellent expository style.

Book Harmonic Analysis of Operators on Hilbert Space

Download or read book Harmonic Analysis of Operators on Hilbert Space written by Béla Sz Nagy and published by Springer Science & Business Media. This book was released on 2010-09-01 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory. This second edition, in addition to revising and amending the original text, focuses on further developments of the theory, including the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective. For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X. Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition.

Book Statistical Inference  Econometric Analysis and Matrix Algebra

Download or read book Statistical Inference Econometric Analysis and Matrix Algebra written by Bernhard Schipp and published by Springer Science & Business Media. This book was released on 2008-11-27 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift is dedicated to Götz Trenkler on the occasion of his 65th birthday. As can be seen from the long list of contributions, Götz has had and still has an enormous range of interests, and colleagues to share these interests with. He is a leading expert in linear models with a particular focus on matrix algebra in its relation to statistics. He has published in almost all major statistics and matrix theory journals. His research activities also include other areas (like nonparametrics, statistics and sports, combination of forecasts and magic squares, just to mention afew). Götz Trenkler was born in Dresden in 1943. After his school years in East G- many and West-Berlin, he obtained a Diploma in Mathematics from Free University of Berlin (1970), where he also discovered his interest in Mathematical Statistics. In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating fu- tion of probability measures. He then moved on to the University of Hannover to become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that would become his predominant ?eld of research in the years to come.

Book Lie Groups  Structure  Actions  and Representations

Download or read book Lie Groups Structure Actions and Representations written by Alan Huckleberry and published by Springer Science & Business Media. This book was released on 2013-08-04 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolf’s broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume. Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis. Contributors D. Akhiezer T. Oshima A. Andrada I. Pacharoni M. L. Barberis F. Ricci L. Barchini S. Rosenberg I. Dotti N. Shimeno M. Eastwood J. Tirao V. Fischer S. Treneer T. Kobayashi C.T.C. Wall A. Korányi D. Wallace B. Kostant K. Wiboonton P. Kostelec F. Xu K.-H. Neeb O. Yakimova G. Olafsson R. Zierau B. Ørsted

Book Representation Theory and Noncommutative Harmonic Analysis II

Download or read book Representation Theory and Noncommutative Harmonic Analysis II written by A.A. Kirillov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.