EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Inference for Diffusion Processes

Download or read book Inference for Diffusion Processes written by Christiane Fuchs and published by Springer Science & Business Media. This book was released on 2013-01-18 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diffusion processes are a promising instrument for realistically modelling the time-continuous evolution of phenomena not only in the natural sciences but also in finance and economics. Their mathematical theory, however, is challenging, and hence diffusion modelling is often carried out incorrectly, and the according statistical inference is considered almost exclusively by theoreticians. This book explains both topics in an illustrative way which also addresses practitioners. It provides a complete overview of the current state of research and presents important, novel insights. The theory is demonstrated using real data applications.

Book Statistical Inference for Ergodic Diffusion Processes

Download or read book Statistical Inference for Ergodic Diffusion Processes written by Yury A. Kutoyants and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.

Book Parameter Estimation in Stochastic Differential Equations

Download or read book Parameter Estimation in Stochastic Differential Equations written by Jaya P. N. Bishwal and published by Springer. This book was released on 2007-09-26 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.

Book Statistics of Random Processes II

Download or read book Statistics of Random Processes II written by Robert S. Liptser and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics." --SIAM REVIEW

Book Parameter Estimation in Stochastic Volatility Models

Download or read book Parameter Estimation in Stochastic Volatility Models written by Jaya P. N. Bishwal and published by Springer Nature. This book was released on 2022-08-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Book Stochastic Epidemic Models with Inference

Download or read book Stochastic Epidemic Models with Inference written by Tom Britton and published by Springer Nature. This book was released on 2019-11-30 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on stochastic models for the spread of infectious diseases in a human population, this book is the outcome of a two-week ICPAM/CIMPA school on "Stochastic models of epidemics" which took place in Ziguinchor, Senegal, December 5–16, 2015. The text is divided into four parts, each based on one of the courses given at the school: homogeneous models (Tom Britton and Etienne Pardoux), two-level mixing models (David Sirl and Frank Ball), epidemics on graphs (Viet Chi Tran), and statistics for epidemic models (Catherine Larédo). The CIMPA school was aimed at PhD students and Post Docs in the mathematical sciences. Parts (or all) of this book can be used as the basis for traditional or individual reading courses on the topic. For this reason, examples and exercises (some with solutions) are provided throughout.

Book Statistical Inference for Fractional Diffusion Processes

Download or read book Statistical Inference for Fractional Diffusion Processes written by B. L. S. Prakasa Rao and published by John Wiley & Sons. This book was released on 2011-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view. This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable. Key features: Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion. Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence. Presents a study of parametric and nonparametric inference problems for the fractional diffusion process. Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion. Includes recent results and developments in the area of statistical inference of fractional diffusion processes. Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book Bayesian Filtering and Smoothing

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Book Statistical Inferences for Stochasic Processes

Download or read book Statistical Inferences for Stochasic Processes written by Ishwar V. Basawa and published by Elsevier. This book was released on 2014-06-28 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stats Inference Stochasic Process

Book Parameter Estimation in Fractional Diffusion Models

Download or read book Parameter Estimation in Fractional Diffusion Models written by Kęstutis Kubilius and published by Springer. This book was released on 2018-01-04 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides simple and suitable parameter estimation methods in these models, making it a valuable resource for all researchers in this field. The book is addressed to specialists and researchers in the theory and statistics of stochastic processes, practitioners who apply statistical methods of parameter estimation, graduate and post-graduate students who study mathematical modeling and statistics.

Book In All Likelihood

    Book Details:
  • Author : Yudi Pawitan
  • Publisher : OUP Oxford
  • Release : 2013-01-17
  • ISBN : 0191650587
  • Pages : 626 pages

Download or read book In All Likelihood written by Yudi Pawitan and published by OUP Oxford. This book was released on 2013-01-17 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a course in the theory of statistics this text concentrates on what can be achieved using the likelihood/Fisherian method of taking account of uncertainty when studying a statistical problem. It takes the concept ot the likelihood as providing the best methods for unifying the demands of statistical modelling and the theory of inference. Every likelihood concept is illustrated by realistic examples, which are not compromised by computational problems. Examples range from a simile comparison of two accident rates, to complex studies that require generalised linear or semiparametric modelling. The emphasis is that the likelihood is not simply a device to produce an estimate, but an important tool for modelling. The book generally takes an informal approach, where most important results are established using heuristic arguments and motivated with realistic examples. With the currently available computing power, examples are not contrived to allow a closed analytical solution, and the book can concentrate on the statistical aspects of the data modelling. In addition to classical likelihood theory, the book covers many modern topics such as generalized linear models and mixed models, non parametric smoothing, robustness, the EM algorithm and empirical likelihood.

Book Parameter Estimation for Stochastic Processes

Download or read book Parameter Estimation for Stochastic Processes written by Yu. A. Kutoyants and published by . This book was released on 1984 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Processes and Applications

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Book Theory of Point Estimation

Download or read book Theory of Point Estimation written by Erich L. Lehmann and published by Springer Science & Business Media. This book was released on 2006-05-02 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second, much enlarged edition by Lehmann and Casella of Lehmann's classic text on point estimation maintains the outlook and general style of the first edition. All of the topics are updated, while an entirely new chapter on Bayesian and hierarchical Bayesian approaches is provided, and there is much new material on simultaneous estimation. Each chapter concludes with a Notes section which contains suggestions for further study. This is a companion volume to the second edition of Lehmann's "Testing Statistical Hypotheses".

Book Statistical Estimation

    Book Details:
  • Author : I.A. Ibragimov
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1489900276
  • Pages : 410 pages

Download or read book Statistical Estimation written by I.A. Ibragimov and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.

Book Advances in Differential and Difference Equations with Applications 2020

Download or read book Advances in Differential and Difference Equations with Applications 2020 written by Dumitru Baleanu and published by MDPI. This book was released on 2021-01-20 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.