EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Inclusive Search Strategies and Bottom up Approaches for New Physics at Colliders

Download or read book Inclusive Search Strategies and Bottom up Approaches for New Physics at Colliders written by Sonia El Hedri and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The first run of the Large Hadron Collider (LHC) has strongly challenged our view of new physics by tightly constraining the most investigated scenarios such as super- symmetry. If new physics is within the reach of future experiments, discovering it will require devising new data analysis techniques and considering new approaches to open issues such as the fine-tuning problem. This thesis discusses how to elaborate new search strategies using signature-based --bottom-up-- approaches. It focuses in particular on multijet LHC signatures, the fine-tuning problem, dark matter detection and explaining non-standards Higgs couplings.

Book Searches for New Physics at Colliders

Download or read book Searches for New Physics at Colliders written by My Phuong Thi Le and published by Stanford University. This book was released on 2011 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The turning-on of the Large Hadron Collider is the momentous milestone in our quest for new physics beyond the Standard Model. Soon, we will be presented with the task of detecting, identifying, and studying the possibly large parameter space of the underlying model. In this thesis, we will look at some possible extensions to the SM, their signatures at colliders, and possible search strategies to explore the new physics in a model-independent way. In chapter 2, we study the extended neutral gauge sector of the Littlest Higgs model at the 500 GeV e+e- collider using the fermion pair production and Higgs associate production channel. We find that these channels can provide an accurate determination of the fundamental parameters and thus allows the verification of the little Higgs mechanism designed to cancel the Higgs mass quadratic divergence. In chapter 3, we study the ATLAS supersymmetry searches proposed for the 14 TeV pp collider using the $\sim$ 70k models of the phenomenological Minimal Supersymmetric Model (pMSSM) moldel set, that have survived many theoretical and experimental constraints. Since pMSSM does not make any simplifying assumptions about its SUSY-breaking mechanism at high scale, this encompasses a broad class of Supersymmetric models. We find that even though these searches were optimized mostly for mSUGRA signals, they are relatively robust in observing the more general pMSSM models. For the case of models in which squarks and gluinos have mass below 1 TeV, essentially all of these models ($> 99\%$) were observable in at least one of these searches, with 1 $fb^{-1}$ of integrated luminosity allowing for an uncertainty of 50\% in the SM background. We found that 0-lepton searches are the most powerful searches, while searches with 1-2 leptons do not have coverage as good as has been shown for mSUGRA. We then study possible reasons why a model could not be observed. These difficult models mostly include those with long-lived charginos which lead to small Missing Tranverse Energy (MET) and models with squeezed spectra which lead to soft jets that fail the jet cuts. In chapter 4, we study similar searches that have been carried out by ATLAS at the 7 TeV LHC. We found that systematic uncertainty again plays an important role in determining the coverage of the searches. This is especially true for searches with a large SM background, such as $n$-jet 0 lepton searches. We study the implication of a null result from the 7 TeV LHC. We find that the degree of fine-tuning in the pMSSM depends on the prior in which we scan our 19-dimensional space, but overall it is not as large as in mSUGRA. We find that a null result at the 7 TeV with $10 fb^{-1}$ and 20\% systematic errors would imply a need for a higher energy e+e- machine than the 500 GeV ILC to study Supersymmetry. Continuing on along the line of Supersymmetry, in chapter 5 we explore the possibility of adding one more generation to the MSSM (4GMSSM). We find that the CP-odd A boson can be very light due to the contribution of the heavy 4th generation fermion loops while all other Higgs particles (including the CP-even {\it h}) are all quite heavy. The parameter $tan(\beta)$ is strongly constrained to be between 0.5 and 2 due to perturbativity requirements on Yukawa couplings. We study the electroweak constraints as well as collider signatures on the possibility of a light A of mass $\sim$115 GeV. As for an LHC discovery, we find that this light A can be seen in the standard 2-photon Higgs search channel with cross-section more than an order of magnitude greater than that of the SM Higgs. In the last two chapters, we study possible search strategies to explore the new physics in a model-independent way. In chapter 6, we attempt to show how one could be largely agnostic about the underlying model in exploring the complete kinematically-allowed parameter space of pair-produced color octet particles (with mass $m_{\tilde{g}}$) that each directly decay into two jets plus a neutral stable particle (with mass $m_{\tilde{B}}$) that would escape the detectors and appear as MET. The kinematics of this process can be completely described by two parameters $m_{\tilde {g}}$ and $m_{\tilde {B}}$ , and in particular their splitting determines the softness or hardness of jets from the decay products. In order to cover the whole parameter space, one would need separate searches for different regions. We show that optimizing the final cuts for every ($m_{\tilde {g}}$, $m_{\tilde {B}}$) point, and combining all searches, can extend the coverage significantly. Since this is just based on the kinematics of the decay, this result can be easily interpreted for any model with this decay topology. In chapter 7, we carry this model-independent approach further in jets plus missing energy searches, by proposing that one should bin the measured data (or simulated SM background) differentially in MET and $H_T$ (scalar sum of invisible energy) for each search, and use them to set limits on any model of interest. We demonstrate this technique by carrying out a search similar to that studied in chapter 6, with one added decay step for the color octet particle, mainly it decays to 2 jets and another particle (with mass $m_{\tilde {W}}$) and it in turn decays to the neutral stable particle and 2 jets. We study different kinematic regions and set bounds in this 3-dimensional parameter space ($m_{\tilde {g}}$, $m_{\tilde {W}}$, $m_{\tilde {B}}$).

Book Two Complementary Strategies for New Physics Searches at Lepton Colliders

Download or read book Two Complementary Strategies for New Physics Searches at Lepton Colliders written by Benjamin Henry Hooberman and published by . This book was released on 2009 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Searches for New Physics at Colliders

Download or read book Searches for New Physics at Colliders written by My Phuong Thi Le and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The turning-on of the Large Hadron Collider is the momentous milestone in our quest for new physics beyond the Standard Model. Soon, we will be presented with the task of detecting, identifying, and studying the possibly large parameter space of the underlying model. In this thesis, we will look at some possible extensions to the SM, their signatures at colliders, and possible search strategies to explore the new physics in a model-independent way. In chapter 2, we study the extended neutral gauge sector of the Littlest Higgs model at the 500 GeV e+e- collider using the fermion pair production and Higgs associate production channel. We find that these channels can provide an accurate determination of the fundamental parameters and thus allows the verification of the little Higgs mechanism designed to cancel the Higgs mass quadratic divergence. In chapter 3, we study the ATLAS supersymmetry searches proposed for the 14 TeV pp collider using the $\sim$ 70k models of the phenomenological Minimal Supersymmetric Model (pMSSM) moldel set, that have survived many theoretical and experimental constraints. Since pMSSM does not make any simplifying assumptions about its SUSY-breaking mechanism at high scale, this encompasses a broad class of Supersymmetric models. We find that even though these searches were optimized mostly for mSUGRA signals, they are relatively robust in observing the more general pMSSM models. For the case of models in which squarks and gluinos have mass below 1 TeV, essentially all of these models ($> 99\%$) were observable in at least one of these searches, with 1 $fb^{-1}$ of integrated luminosity allowing for an uncertainty of 50\% in the SM background. We found that 0-lepton searches are the most powerful searches, while searches with 1-2 leptons do not have coverage as good as has been shown for mSUGRA. We then study possible reasons why a model could not be observed. These difficult models mostly include those with long-lived charginos which lead to small Missing Tranverse Energy (MET) and models with squeezed spectra which lead to soft jets that fail the jet cuts. In chapter 4, we study similar searches that have been carried out by ATLAS at the 7 TeV LHC. We found that systematic uncertainty again plays an important role in determining the coverage of the searches. This is especially true for searches with a large SM background, such as $n$-jet 0 lepton searches. We study the implication of a null result from the 7 TeV LHC. We find that the degree of fine-tuning in the pMSSM depends on the prior in which we scan our 19-dimensional space, but overall it is not as large as in mSUGRA. We find that a null result at the 7 TeV with $10 fb^{-1}$ and 20\% systematic errors would imply a need for a higher energy e+e- machine than the 500 GeV ILC to study Supersymmetry. Continuing on along the line of Supersymmetry, in chapter 5 we explore the possibility of adding one more generation to the MSSM (4GMSSM). We find that the CP-odd A boson can be very light due to the contribution of the heavy 4th generation fermion loops while all other Higgs particles (including the CP-even {\it h}) are all quite heavy. The parameter $tan(\beta)$ is strongly constrained to be between 0.5 and 2 due to perturbativity requirements on Yukawa couplings. We study the electroweak constraints as well as collider signatures on the possibility of a light A of mass $\sim$115 GeV. As for an LHC discovery, we find that this light A can be seen in the standard 2-photon Higgs search channel with cross-section more than an order of magnitude greater than that of the SM Higgs. In the last two chapters, we study possible search strategies to explore the new physics in a model-independent way. In chapter 6, we attempt to show how one could be largely agnostic about the underlying model in exploring the complete kinematically-allowed parameter space of pair-produced color octet particles (with mass $m_{\tilde{g}}$) that each directly decay into two jets plus a neutral stable particle (with mass $m_{\tilde{B}}$) that would escape the detectors and appear as MET. The kinematics of this process can be completely described by two parameters $m_{\tilde {g}}$ and $m_{\tilde {B}}$, and in particular their splitting determines the softness or hardness of jets from the decay products. In order to cover the whole parameter space, one would need separate searches for different regions. We show that optimizing the final cuts for every ($m_{\tilde {g}}$, $m_{\tilde {B}}$) point, and combining all searches, can extend the coverage significantly. Since this is just based on the kinematics of the decay, this result can be easily interpreted for any model with this decay topology. In chapter 7, we carry this model-independent approach further in jets plus missing energy searches, by proposing that one should bin the measured data (or simulated SM background) differentially in MET and $H_T$ (scalar sum of invisible energy) for each search, and use them to set limits on any model of interest. We demonstrate this technique by carrying out a search similar to that studied in chapter 6, with one added decay step for the color octet particle, mainly it decays to 2 jets and another particle (with mass $m_{\tilde {W}}$) and it in turn decays to the neutral stable particle and 2 jets. We study different kinematic regions and set bounds in this 3-dimensional parameter space ($m_{\tilde {g}}$, $m_{\tilde {W}}$, $m_{\tilde {B}}$).

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2352 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Assessment of U S  Based Electron Ion Collider Science

Download or read book An Assessment of U S Based Electron Ion Collider Science written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-10-13 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.

Book Weak Scale Supersymmetry

    Book Details:
  • Author : Howard Baer
  • Publisher : Cambridge University Press
  • Release : 2023-01-31
  • ISBN : 1009289845
  • Pages : 557 pages

Download or read book Weak Scale Supersymmetry written by Howard Baer and published by Cambridge University Press. This book was released on 2023-01-31 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This OA text develops the basic concepts of supersymmetry for experimental and phenomenological particle physicists and graduate students.

Book Physics at the Large Hadron Collider

Download or read book Physics at the Large Hadron Collider written by Amitava Datta and published by Springer Science & Business Media. This book was released on 2010-05-30 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.

Book Electroweak Physics   Proceedings Of The Fourteenth Lake Louise Winter Institute

Download or read book Electroweak Physics Proceedings Of The Fourteenth Lake Louise Winter Institute written by Alan Astbury and published by World Scientific. This book was released on 2000-01-11 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the electroweak interactions at low and high energies. The results of the collider experiments are discussed, and the low energy experiments with complications for astrophysics are considered. Also, theoretical developments are presented to highlight the impact of forthcoming experiments and to find new directions of study.

Book The Black Book of Quantum Chromodynamics

Download or read book The Black Book of Quantum Chromodynamics written by John Campbell and published by Oxford University Press. This book was released on 2018 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title provides an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The text provides the reader with an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1994-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1994 with total page 1256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Large Hadron Collider

Download or read book The Large Hadron Collider written by Lyndon R. Evans and published by EPFL Press. This book was released on 2009-01-01 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the technology and engineering of the Large Hadron collider (LHC), one of the greatest scientific marvels of this young 21st century. This book traces the feat of its construction, written by the head scientists involved, placed into the context of the scientific goals and principles.

Book Machine Learning under Resource Constraints   Discovery in Physics

Download or read book Machine Learning under Resource Constraints Discovery in Physics written by Katharina Morik and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-12-31 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 2 covers machine learning for knowledge discovery in particle and astroparticle physics. Their instruments, e.g., particle detectors or telescopes, gather petabytes of data. Here, machine learning is necessary not only to process the vast amounts of data and to detect the relevant examples efficiently, but also as part of the knowledge discovery process itself. The physical knowledge is encoded in simulations that are used to train the machine learning models. At the same time, the interpretation of the learned models serves to expand the physical knowledge. This results in a cycle of theory enhancement supported by machine learning.

Book High Energy Physics Index

Download or read book High Energy Physics Index written by and published by . This book was released on 1993 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CP Violation Without Strangeness

Download or read book CP Violation Without Strangeness written by Iosif B. Khriplovich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric dipole moments (EDMs) have interested physicists since 1950, when it was first suggested that there was no experimental evidence that nuclear forces are symmetric under parity (P) transformation. This question was regarded as speculative because the existence of an EDM, in addition to P violation, requires a violation of time-reversal (T) symmetry. In 1964 it was discovered that the invariance under CP transformation, which combines charge conjugation (C) with parity, is violated in K-meson decays. This provided a new incentive for EDM searches. Since the combined operations of CPT are expected to leave a system invariant, breakdown of CP invariance should be accompanied by a violation of time-reversal symmetry. Thus there is a reason to expect that EDMs should exist at some level. The original neutron EDM experiments were later supplemented with checks of T invariance in atoms and molecules. These investigations are pursued now by many groups. Over the years, the upper limit on the neutron EDM has been improved by seven orders of magnitude, and the upper limit on the electron EDM obtained in atomic experiments is even more strict.