EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Improving Model Selection in Logistic Regression Using Bootstrapping Techniques

Download or read book Improving Model Selection in Logistic Regression Using Bootstrapping Techniques written by Scott Weston Nuernberger and published by . This book was released on 2002 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Feature Engineering and Selection

Download or read book Feature Engineering and Selection written by Max Kuhn and published by CRC Press. This book was released on 2019-07-25 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Book Applied Regression Analysis and Generalized Linear Models

Download or read book Applied Regression Analysis and Generalized Linear Models written by John Fox and published by SAGE Publications. This book was released on 2015-03-18 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.

Book Modern Statistics with R

Download or read book Modern Statistics with R written by Måns Thulin and published by CRC Press. This book was released on 2024-08-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Book Flexible Imputation of Missing Data  Second Edition

Download or read book Flexible Imputation of Missing Data Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Book Hands On Machine Learning with R

Download or read book Hands On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Book Subset Selection in Regression

Download or read book Subset Selection in Regression written by Alan Miller and published by CRC Press. This book was released on 2002-04-15 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author ha

Book Bootstrap Methods and Their Application

Download or read book Bootstrap Methods and Their Application written by A. C. Davison and published by Cambridge University Press. This book was released on 1997-10-28 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disk contains the library functions and documentation for use with Splus for Windows.

Book Regression Modeling Strategies

Download or read book Regression Modeling Strategies written by Frank E. Harrell and published by Springer Science & Business Media. This book was released on 2001-06-15 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents information on regressions modeling strategies that address many issues arising when developing multivariable models using (real data) examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with “too many variables to analyze and not enough observations”, and powerful model validation techniques based on the bootstrap. The text deals with model uncertainty and its effect on inference. It also presents many graphical methods for communicating complex regression models to nonstatisticians.

Book An Introduction to the Bootstrap

Download or read book An Introduction to the Bootstrap written by Bradley Efron and published by CRC Press. This book was released on 1994-05-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.

Book Improving Risk Analysis

Download or read book Improving Risk Analysis written by Louis Anthony Cox Jr. and published by Springer Science & Business Media. This book was released on 2013-02-03 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving Risk Analysis shows how to better assess and manage uncertain risks when the consequences of alternative actions are in doubt. The constructive methods of causal analysis and risk modeling presented in this monograph will enable to better understand uncertain risks and decide how to manage them. The book is divided into three parts. Parts 1 shows how high-quality risk analysis can improve the clarity and effectiveness of individual, community, and enterprise decisions when the consequences of different choices are uncertain. Part 2 discusses social decisions. Part 3 illustrates these methods and models, showing how to apply them to health effects of particulate air pollution. "Tony Cox’s new book addresses what risk analysts and policy makers most need to know: How to find out what causes what, and how to quantify the practical differences that changes in risk management practices would make. The constructive methods in Improving Risk Analysis will be invaluable in helping practitioners to deliver more useful insights to inform high-stakes decisions and policy,in areas ranging from disaster planning to counter-terrorism investments to enterprise risk management to air pollution abatement policies. Better risk management is possible and practicable; Improving Risk Analysis explains how." Elisabeth Pate-Cornell, Stanford University "Improving Risk Analysis offers crucial advice for moving policy-relevant risk analyses towards more defensible, causally-based methods. Tony Cox draws on his extensive experience to offer sound advice and insights that will be invaluable to both policy makers and analysts in strengthening the foundations for important risk analyses. This much-needed book should be required reading for policy makers and policy analysts confronting uncertain risks and seeking more trustworthy risk analyses." Seth Guikema, Johns Hopkins University "Tony Cox has been a trail blazer in quantitative risk analysis, and his new book gives readers the knowledge and tools needed to cut through the complexity and advocacy inherent in risk analysis. Cox’s careful exposition is detailed and thorough, yet accessible to non-technical readers interested in understanding uncertain risks and the outcomes associated with different mitigation actions. Improving Risk Analysis should be required reading for public officials responsible for making policy decisions about how best to protect public health and safety in an uncertain world." Susan E. Dudley, George Washington University

Book Randomization  Bootstrap and Monte Carlo Methods in Biology

Download or read book Randomization Bootstrap and Monte Carlo Methods in Biology written by Bryan F.J. Manly and published by CRC Press. This book was released on 2020-07-20 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. Like its bestselling predecessors, the fourth edition of Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates a large number of statistical methods with an emphasis on biological applications. The focus is now on the use of randomization, bootstrapping, and Monte Carlo methods in constructing confidence intervals and doing tests of significance. The text provides comprehensive coverage of computer-intensive applications, with data sets available online. Features Presents an overview of computer-intensive statistical methods and applications in biology Covers a wide range of methods including bootstrap, Monte Carlo, ANOVA, regression, and Bayesian methods Makes it easy for biologists, researchers, and students to understand the methods used Provides information about computer programs and packages to implement calculations, particularly using R code Includes a large number of real examples from a range of biological disciplines Written in an accessible style, with minimal coverage of theoretical details, this book provides an excellent introduction to computer-intensive statistical methods for biological researchers. It can be used as a course text for graduate students, as well as a reference for researchers from a range of disciplines. The detailed, worked examples of real applications will enable practitioners to apply the methods to their own biological data.

Book Data Mining  Concepts  Methodologies  Tools  and Applications

Download or read book Data Mining Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2012-11-30 with total page 2335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining continues to be an emerging interdisciplinary field that offers the ability to extract information from an existing data set and translate that knowledge for end-users into an understandable way. Data Mining: Concepts, Methodologies, Tools, and Applications is a comprehensive collection of research on the latest advancements and developments of data mining and how it fits into the current technological world.

Book Regression Modeling Strategies

Download or read book Regression Modeling Strategies written by Frank E. Harrell and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".

Book Statistical and Machine Learning Data Mining

Download or read book Statistical and Machine Learning Data Mining written by Bruce Ratner and published by CRC Press. This book was released on 2017-07-12 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Book Multivariable Model   Building

Download or read book Multivariable Model Building written by Patrick Royston and published by John Wiley & Sons. This book was released on 2008-09-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariable regression models are of fundamental importance in all areas of science in which empirical data must be analyzed. This book proposes a systematic approach to building such models based on standard principles of statistical modeling. The main emphasis is on the fractional polynomial method for modeling the influence of continuous variables in a multivariable context, a topic for which there is no standard approach. Existing options range from very simple step functions to highly complex adaptive methods such as multivariate splines with many knots and penalisation. This new approach, developed in part by the authors over the last decade, is a compromise which promotes interpretable, comprehensible and transportable models.

Book Analytical and Stochastic Modeling Techniques and Applications

Download or read book Analytical and Stochastic Modeling Techniques and Applications written by Khalid Al-Begain and published by Springer. This book was released on 2010-06-17 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th International Conference on Analytical and Stochastic Modeling Techniques and Applications, ASMTA 2010, held in Cardiff, UK, in June 2010. The 28 revised full papers presented were carefully reviewed and selected from numerous submissions for inclusion in the book. The papers are organized in topical sections on queueing theory, specification languages and tools, telecommunication systems, estimation, prediction, and stochastic modelling.