EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Artificial Intelligence and Data Mining Approaches in Security Frameworks

Download or read book Artificial Intelligence and Data Mining Approaches in Security Frameworks written by Neeraj Bhargava and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: ARTIFICIAL INTELLIGENCE AND DATA MINING IN SECURITY FRAMEWORKS Written and edited by a team of experts in the field, this outstanding new volume offers solutions to the problems of security, outlining the concepts behind allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Artificial intelligence (AI) and data mining is the fastest growing field in computer science. AI and data mining algorithms and techniques are found to be useful in different areas like pattern recognition, automatic threat detection, automatic problem solving, visual recognition, fraud detection, detecting developmental delay in children, and many other applications. However, applying AI and data mining techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to artificial intelligence. Successful application of security frameworks to enable meaningful, cost effective, personalized security service is a primary aim of engineers and researchers today. However realizing this goal requires effective understanding, application and amalgamation of AI and data mining and several other computing technologies to deploy such a system in an effective manner. This book provides state of the art approaches of artificial intelligence and data mining in these areas. It includes areas of detection, prediction, as well as future framework identification, development, building service systems and analytical aspects. In all these topics, applications of AI and data mining, such as artificial neural networks, fuzzy logic, genetic algorithm and hybrid mechanisms, are explained and explored. This book is aimed at the modeling and performance prediction of efficient security framework systems, bringing to light a new dimension in the theory and practice. This groundbreaking new volume presents these topics and trends, bridging the research gap on AI and data mining to enable wide-scale implementation. Whether for the veteran engineer or the student, this is a must-have for any library. This groundbreaking new volume: Clarifies the understanding of certain key mechanisms of technology helpful in the use of artificial intelligence and data mining in security frameworks Covers practical approaches to the problems engineers face in working in this field, focusing on the applications used every day Contains numerous examples, offering critical solutions to engineers and scientists Presents these new applications of AI and data mining that are of prime importance to human civilization as a whole

Book Applications of Data Mining in Computer Security

Download or read book Applications of Data Mining in Computer Security written by Daniel Barbará and published by Springer Science & Business Media. This book was released on 2002-05-31 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is becoming a pervasive technology in activities as diverse as using historical data to predict the success of a marketing campaign, looking for patterns in financial transactions to discover illegal activities or analyzing genome sequences. From this perspective, it was just a matter of time for the discipline to reach the important area of computer security. Applications Of Data Mining In Computer Security presents a collection of research efforts on the use of data mining in computer security. Applications Of Data Mining In Computer Security concentrates heavily on the use of data mining in the area of intrusion detection. The reason for this is twofold. First, the volume of data dealing with both network and host activity is so large that it makes it an ideal candidate for using data mining techniques. Second, intrusion detection is an extremely critical activity. This book also addresses the application of data mining to computer forensics. This is a crucial area that seeks to address the needs of law enforcement in analyzing the digital evidence.

Book Data Warehousing and Data Mining Techniques for Cyber Security

Download or read book Data Warehousing and Data Mining Techniques for Cyber Security written by Anoop Singhal and published by Springer Science & Business Media. This book was released on 2007-04-06 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of data warehousing and data mining techniques to computer security is an important emerging area, as information processing and internet accessibility costs decline and more and more organizations become vulnerable to cyber attacks. These security breaches include attacks on single computers, computer networks, wireless networks, databases, or authentication compromises. This book describes data warehousing and data mining techniques that can be used to detect attacks. It is designed to be a useful handbook for practitioners and researchers in industry, and is also suitable as a text for advanced-level students in computer science.

Book Machine Learning Techniques and Analytics for Cloud Security

Download or read book Machine Learning Techniques and Analytics for Cloud Security written by Rajdeep Chakraborty and published by John Wiley & Sons. This book was released on 2021-11-30 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions The aim of Machine Learning Techniques and Analytics for Cloud Security is to integrate machine learning approaches to meet various analytical issues in cloud security. Cloud security with ML has long-standing challenges that require methodological and theoretical handling. The conventional cryptography approach is less applied in resource-constrained devices. To solve these issues, the machine learning approach may be effectively used in providing security to the vast growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues, such as effective intrusion detection systems, zero-knowledge authentication systems, measures for passive attacks, protocols design, privacy system designs, applications, and many more. The book also contains case studies/projects outlining how to implement various security features using machine learning algorithms and analytics on existing cloud-based products in public, private and hybrid cloud respectively. Audience Research scholars and industry engineers in computer sciences, electrical and electronics engineering, machine learning, computer security, information technology, and cryptography.

Book Advances in Data Mining  Applications and Theoretical Aspects

Download or read book Advances in Data Mining Applications and Theoretical Aspects written by Petra Perner and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the tenth event of the Industrial Conference on Data Mining ICDM held in Berlin (www.data-mining-forum.de). For this edition the Program Committee received 175 submissions. After the pe- review process, we accepted 49 high-quality papers for oral presentation that are included in this book. The topics range from theoretical aspects of data mining to app- cations of data mining such as on multimedia data, in marketing, finance and telec- munication, in medicine and agriculture, and in process control, industry and society. Extended versions of selected papers will appear in the international journal Trans- tions on Machine Learning and Data Mining (www.ibai-publishing.org/journal/mldm). Ten papers were selected for poster presentations and are published in the ICDM Poster Proceeding Volume by ibai-publishing (www.ibai-publishing.org). In conjunction with ICDM four workshops were held on special hot applicati- oriented topics in data mining: Data Mining in Marketing DMM, Data Mining in LifeScience DMLS, the Workshop on Case-Based Reasoning for Multimedia Data CBR-MD, and the Workshop on Data Mining in Agriculture DMA. The Workshop on Data Mining in Agriculture ran for the first time this year. All workshop papers will be published in the workshop proceedings by ibai-publishing (www.ibai-publishing.org). Selected papers of CBR-MD will be published in a special issue of the international journal Transactions on Case-Based Reasoning (www.ibai-publishing.org/journal/cbr).

Book Machine Learning and Data Mining for Computer Security

Download or read book Machine Learning and Data Mining for Computer Security written by Marcus A. Maloof and published by Springer Science & Business Media. This book was released on 2006-02-27 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.

Book Handbook of Research on Intrusion Detection Systems

Download or read book Handbook of Research on Intrusion Detection Systems written by Gupta, Brij B. and published by IGI Global. This book was released on 2020-02-07 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Businesses in today’s world are adopting technology-enabled operating models that aim to improve growth, revenue, and identify emerging markets. However, most of these businesses are not suited to defend themselves from the cyber risks that come with these data-driven practices. To further prevent these threats, they need to have a complete understanding of modern network security solutions and the ability to manage, address, and respond to security breaches. The Handbook of Research on Intrusion Detection Systems provides emerging research exploring the theoretical and practical aspects of prominent and effective techniques used to detect and contain breaches within the fields of data science and cybersecurity. Featuring coverage on a broad range of topics such as botnet detection, cryptography, and access control models, this book is ideally designed for security analysts, scientists, researchers, programmers, developers, IT professionals, scholars, students, administrators, and faculty members seeking research on current advancements in network security technology.

Book ICDSMLA 2019

Download or read book ICDSMLA 2019 written by Amit Kumar and published by Springer Nature. This book was released on 2020-05-19 with total page 2010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected high-impact articles from the 1st International Conference on Data Science, Machine Learning & Applications 2019. It highlights the latest developments in the areas of Artificial Intelligence, Machine Learning, Soft Computing, Human–Computer Interaction and various data science & machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.

Book Improving Information Security Practices through Computational Intelligence

Download or read book Improving Information Security Practices through Computational Intelligence written by Awad, Wasan Shaker and published by IGI Global. This book was released on 2015-08-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent explosion in complex global networking architectures has spurred a concomitant rise in the need for robust information security. Further, as computing power increases exponentially with every passing year, so do the number of proposed cryptographic schemata for improving and ensuring the encryption integrity of cutting-edge infosec protocols. Improving Information Security Practices through Computational Intelligence presents an overview of the latest and greatest research in the field, touching on such topics as cryptology, stream ciphers, and intrusion detection, and providing new insights to an audience of students, teachers, and entry-level researchers working in computational intelligence, information security, and security engineering.

Book Design and Implementation of Data Mining Tools

Download or read book Design and Implementation of Data Mining Tools written by Bhavani Thuraisingham and published by CRC Press. This book was released on 2009-06-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on three applications of data mining, Design and Implementation of Data Mining Tools explains how to create and employ systems and tools for intrusion detection, Web page surfing prediction, and image classification. Mainly based on the authors' own research work, the book takes a practical approach to the subject.The first part of the boo

Book Malware Detection

    Book Details:
  • Author : Mihai Christodorescu
  • Publisher : Springer Science & Business Media
  • Release : 2007-03-06
  • ISBN : 0387445994
  • Pages : 307 pages

Download or read book Malware Detection written by Mihai Christodorescu and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book captures the state of the art research in the area of malicious code detection, prevention and mitigation. It contains cutting-edge behavior-based techniques to analyze and detect obfuscated malware. The book analyzes current trends in malware activity online, including botnets and malicious code for profit, and it proposes effective models for detection and prevention of attacks using. Furthermore, the book introduces novel techniques for creating services that protect their own integrity and safety, plus the data they manage.

Book Networks Attack Detection on 5G Networks using Data Mining Techniques

Download or read book Networks Attack Detection on 5G Networks using Data Mining Techniques written by Sagar Dhanraj Pande and published by CRC Press. This book was released on 2024-04-23 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) and its applications have risen to prominence as one of the most active study areas in recent years. In recent years, a rising number of AI applications have been applied in a variety of areas. Agriculture, transportation, medicine, and health are all being transformed by AI technology. The Internet of Things (IoT) market is thriving, having a significant impact on a wide variety of industries and applications, including e-health care, smart cities, smart transportation, and industrial engineering. Recent breakthroughs in artificial intelligence and machine learning techniques have reshaped various aspects of artificial vision, considerably improving the state of the art for artificial vision systems across a broad range of high-level tasks. As a result, several innovations and studies are being conducted to improve the performance and productivity of IoT devices across multiple industries using machine learning and artificial intelligence. Security is a primary consideration when analyzing the next generation communication network due to the rapid advancement of technology. Additionally, data analytics, deep intelligence, deep learning, cloud computing, and intelligent solutions are being employed in medical, agricultural, industrial, and health care systems that are based on the Internet of Things. This book will look at cutting-edge Network Attacks and Security solutions that employ intelligent data processing and Machine Learning (ML) methods. This book: Covers emerging technologies of network attacks and management aspects Presents artificial intelligence techniques for networks and resource optimization, and toward network automation, and security Showcases recent industrial and technological aspects of next-generation networks Illustrates artificial intelligence techniques to mitigate cyber-attacks, authentication, and authorization challenges Explains smart, and real-time monitoring services, multimedia, cloud computing, and information processing methodologies in 5G networks It is primarily for senior undergraduates, graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology

Book Mining Massive Data Sets for Security

Download or read book Mining Massive Data Sets for Security written by Françoise Fogelman-Soulié and published by IOS Press. This book was released on 2008 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The real power for security applications will come from the synergy of academic and commercial research focusing on the specific issue of security. This book is suitable for those interested in understanding the techniques for handling very large data sets and how to apply them in conjunction for solving security issues.

Book MATLAB

Download or read book MATLAB written by Amos Gilat and published by . This book was released on 2011 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB: An Introduction with Applications 4th Edition walks readers through the ins and outs of this powerful software for technical computing. The first chapter describes basic features of the program and shows how to use it in simple arithmetic operations with scalars. The next two chapters focus on the topic of arrays (the basis of MATLAB), while the remaining text covers a wide range of other applications. MATLAB: An Introduction with Applications 4th Edition is presented gradually and in great detail, generously illustrated through computer screen shots and step-by-step tutorials, and applied in problems in mathematics, science, and engineering.

Book Sensor Data Analysis and Management

Download or read book Sensor Data Analysis and Management written by A. Suresh and published by John Wiley & Sons. This book was released on 2021-11-22 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover detailed insights into the methods, algorithms, and techniques for deep learning in sensor data analysis Sensor Data Analysis and Management: The Role of Deep Learning delivers an insightful and practical overview of the applications of deep learning techniques to the analysis of sensor data. The book collects cutting-edge resources into a single collection designed to enlighten the reader on topics as varied as recent techniques for fault detection and classification in sensor data, the application of deep learning to Internet of Things sensors, and a case study on high-performance computer gathering and processing of sensor data. The editors have curated a distinguished group of perceptive and concise papers that show the potential of deep learning as a powerful tool for solving complex modelling problems across a broad range of industries, including predictive maintenance, health monitoring, financial portfolio forecasting, and driver assistance. The book contains real-time examples of analyzing sensor data using deep learning algorithms and a step-by-step approach for installing and training deep learning using the Python keras library. Readers will also benefit from the inclusion of: A thorough introduction to the Internet of Things for human activity recognition, based on wearable sensor data An exploration of the benefits of neural networks in real-time environmental sensor data analysis Practical discussions of supervised learning data representation, neural networks for predicting physical activity based on smartphone sensor data, and deep-learning analysis of location sensor data for human activity recognition An analysis of boosting with XGBoost for sensor data analysis Perfect for industry practitioners and academics involved in deep learning and the analysis of sensor data, Sensor Data Analysis and Management: The Role of Deep Learning will also earn a place in the libraries of undergraduate and graduate students in data science and computer science programs.

Book Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition  SoCPaR 2016

Download or read book Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition SoCPaR 2016 written by Ajith Abraham and published by Springer. This book was released on 2017-08-17 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents 70 carefully selected papers from a major joint event: the 8th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016) and the 8th International Conference on Computational Aspects of Social Networks (CASoN 2016). SoCPaR–CASoN 2016, which was organized by the Machine Intelligence Research Labs (MIR Labs), USA and Vellore Institute of Technology (VIT), India and held at the VIT on December 19–21, 2016. It brings together researchers and practitioners from academia and industry to share their experiences and exchange new ideas on all interdisciplinary areas of soft computing and pattern recognition, as well as intelligent methods applied to social networks. This book is a valuable resource for practicing engineers/scientists and researchers working in the field of soft computing, pattern recognition and social networks.

Book Statistical Techniques for Network Security  Modern Statistically Based Intrusion Detection and Protection

Download or read book Statistical Techniques for Network Security Modern Statistically Based Intrusion Detection and Protection written by Wang, Yun and published by IGI Global. This book was released on 2008-10-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides statistical modeling and simulating approaches to address the needs for intrusion detection and protection. Covers topics such as network traffic data, anomaly intrusion detection, and prediction events.