EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Impact of WRF Physics and Grid Resolution on Low level Wind Prediction

Download or read book Impact of WRF Physics and Grid Resolution on Low level Wind Prediction written by and published by . This book was released on 2010 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Weather Research and Forecast (WRF) model is used in short-range simulations to explore the sensitivity of model physics and horizontal grid resolution. We choose five events with the clear-sky conditions to study the impact of different planetary boundary layer (PBL), surface and soil-layer physics on low-level wind forecast for two wind farms; one in California (CA) and the other in Texas (TX). Short-range simulations are validated with field measurements. Results indicate that the forecast error of the CA case decreases with increasing grid resolution due to the improved representation of valley winds. Besides, the model physics configuration has a significant impact on the forecast error at this location. In contrast, the forecast error of the TX case exhibits little dependence on grid resolution and is relatively independent of physics configuration. Therefore, the occurrence frequency of lowest root mean square errors (RMSEs) at this location is used to determine an optimal model configuration for subsequent decade-scale regional climate model (RCM) simulations. In this study, we perform two sets of 20-year RCM simulations using the data from the NCAR Global Climate Model (GCM) simulations; one set models the present climate and the other simulates the future climate. These RCM simulations will be used to assess the impact of climate change on future wind energy.

Book Mesoscale Meteorology in Midlatitudes

Download or read book Mesoscale Meteorology in Midlatitudes written by Paul Markowski and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mesoscale Meteorology in Mid-Latitudes presents the dynamics of mesoscale meteorological phenomena in a highly accessible, student-friendly manner. The book's clear mathematical treatments are complemented by high-quality photographs and illustrations. Comprehensive coverage of subjects including boundary layer mesoscale phenomena, orographic phenomena and deep convection is brought together with the latest developments in the field to provide an invaluable resource for mesoscale meteorology students. Mesoscale Meteorology in Mid-Latitudes functions as a comprehensive, easy-to-use undergraduate textbook while also providing a useful reference for graduate students, research scientists and weather industry professionals. Illustrated in full colour throughout Covers the latest developments and research in the field Comprehensive coverage of deep convection and its initiation Uses real life examples of phenomena taken from broad geographical areas to demonstrate the practical aspects of the science

Book Impact of Grid Resolution on Atmospheric Model Simulation of Offshore Surface Wind Speed

Download or read book Impact of Grid Resolution on Atmospheric Model Simulation of Offshore Surface Wind Speed written by Michael Bouey and published by . This book was released on 2012 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study considered the impact of grid resolution on wind velocity simulated by the Weather Research and Forecasting (WRF) model. The period simulated spanned November 2009 through January 2010, for which, multi-resolution nested domains were examined. Basic analysis was performed utilizing the data assimilation tools of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research) to determine the ideal location to examine during the simulation was the Pacific Northwest portion of the United States, specifically the border between California and Oregon. The simulated mutli-resolution nested domains in this region indicated an increase in apparent wind speed as the resolution for the domain was increased. These findings were confirmed by statistical analysis which identified a positive bias for wind speed with respect to increased resolution as well as a correlation coefficient indicating the existence of a positive change in wind speed with increased resolution. An analysis of temperature change was performed in order to test the validity of the findings of the WRF simulation model. The statistical analysis performed on temperature change throughout the increased grid resolution did not indicate any change in temperature. In fact the correlation coefficient values between the domains were found in the 0.90 range, indicating the non-sensitivity of temperature across the increased resolutions. These results validate the findings of the WRF simulation: increased wind velocity can be observed at higher grid resolution. The study then considered the difference between wind velocity observed over the entire domains and the wind velocity observed solely over offshore locations. Wind velocity was observed to be significantly higher (an increase of 68.4%) in the offshore locations. The findings of this study suggest simulation tools should be utilized to examine domains at a higher resolution in order to identify potential locations for wind farms. The results go further to suggest the ideal location for these potential wind farms will be at offshore locations.

Book The Representation of Cumulus Convection in Numerical Models

Download or read book The Representation of Cumulus Convection in Numerical Models written by Kerry Emanuel and published by Springer. This book was released on 2015-03-30 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents descriptions of numerical models for testing cumulus in cloud fields. It is divided into six parts. Part I provides an overview of the problem, including descriptions of cumulus clouds and the effects of ensembles of cumulus clouds on mass, momentum, and vorticity distributions. A review of closure assumptions is also provided. A review of "classical" convection schemes in widespread use is provided in Part II. The special problems associated with the representation of convection in mesoscale models are discussed in Part III, along with descriptions of some of the commonly used mesoscale schemes. Part IV covers some of the problems associated with the representation of convection in climate models, while the parameterization of slantwise convection is the subject of Part V.

Book Statistical Methods in the Atmospheric Sciences

Download or read book Statistical Methods in the Atmospheric Sciences written by Daniel S. Wilks and published by Academic Press. This book was released on 2011-05-20 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and expanded text explains the latest statistical methods that are being used to describe, analyze, test, and forecast atmospheric data. It features numerous worked examples, illustrations, equations, and exercises with separate solutions. The book will help advanced students and professionals understand and communicate what their data sets have to say, and make sense of the scientific literature in meteorology, climatology, and related disciplines.

Book Low Altitude Wind Shear and Its Hazard to Aviation

Download or read book Low Altitude Wind Shear and Its Hazard to Aviation written by National Research Council and published by National Academies Press. This book was released on 1983-02-01 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Coastal Meteorology

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1992-02-01
  • ISBN : 0309046874
  • Pages : 112 pages

Download or read book Coastal Meteorology written by National Research Council and published by National Academies Press. This book was released on 1992-02-01 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Almost half the U.S. population lives along the coast. In another 20 years this population is expected to more than double in size. The unique weather and climate of the coastal zone, circulating pollutants, altering storms, changing temperature, and moving coastal currents affect air pollution and disaster preparedness, ocean pollution, and safeguarding near-shore ecosystems. Activities in commerce, industry, transportation, freshwater supply, safety, recreation, and national defense also are affected. The research community engaged in studies of coastal meteorology in recent years has made significant advancements in describing and predicting atmospheric properties along coasts. Coastal Meteorology reviews this progress and recommends research that would increase the value and application of what is known today.

Book Parameterization Schemes

    Book Details:
  • Author : David J. Stensrud
  • Publisher : Cambridge University Press
  • Release : 2007-05-03
  • ISBN : 0521865409
  • Pages : 408 pages

Download or read book Parameterization Schemes written by David J. Stensrud and published by Cambridge University Press. This book was released on 2007-05-03 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: 1.

Book Precipitation  Advances in Measurement  Estimation and Prediction

Download or read book Precipitation Advances in Measurement Estimation and Prediction written by Silas C. Michaelides and published by Springer Science & Business Media. This book was released on 2008-02-27 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the outcome of contributions from 51 scientists who were invited to expose their latest findings on precipitation research and in particular, on the measurement, estimation and prediction of precipitation. The reader is presented with a blend of theoretical, mathematical and technical treatise of precipitation science but also with authentic applications, ranging from local field experiments and country-scale campaigns to multinational space endeavors.

Book Data Assimilation for Atmospheric  Oceanic and Hydrologic Applications  Vol  II

Download or read book Data Assimilation for Atmospheric Oceanic and Hydrologic Applications Vol II written by Seon Ki Park and published by Springer Science & Business Media. This book was released on 2013-05-22 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.

Book Landfalling tropical cyclones  physical processes  forecasting and impacts

Download or read book Landfalling tropical cyclones physical processes forecasting and impacts written by Yihong Duan and published by Frontiers Media SA. This book was released on 2022-12-29 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Economic Value of Weather and Climate Forecasts

Download or read book Economic Value of Weather and Climate Forecasts written by Richard W. Katz and published by Cambridge University Press. This book was released on 1997 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects to weather prediction. The contributors encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behaviour. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential reference for economists, statisticians, and meteorologists.

Book Marine Fog  Challenges and Advancements in Observations  Modeling  and Forecasting

Download or read book Marine Fog Challenges and Advancements in Observations Modeling and Forecasting written by Darko Koračin and published by Springer. This book was released on 2017-01-28 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the history of marine fog research and applications, and discusses the physical processes leading to fog's formation, evolution, and dissipation. A special emphasis is on the challenges and advancements of fog observation and modeling as well as on efforts toward operational fog forecasting and linkages and feedbacks between marine fog and the environment.

Book Wind Resource Assessment

Download or read book Wind Resource Assessment written by Michael Brower and published by John Wiley & Sons. This book was released on 2012-06-19 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, authoritative guide to the assessment of wind resources for utility-scale wind projects authored by a team of experts from a leading renewable energy consultancy The successful development of wind energy projects depends on an accurate assessment of where, how often, and how strongly the wind blows. A mistake in this stage of evaluation can cause severe financial losses and missed opportunities for developers, lenders, and investors. Wind Resource Assessment: A Practical Guide to Developing a Wind Project shows readers how to achieve a high standard of resource assessment, reduce the uncertainty associated with long-term energy performance, and maximize the value of their project assets. Beginning with the siting, installation, and operation of a high-quality wind monitoring program, this book continues with methods of data quality control and validation, extrapolating measurements from anemometer height to turbine height, adjusting short-term observations for historical climate conditions, and wind flow modeling to account for terrain and surface conditions. In addition, Wind Resource Assessment addresses special topics such as: Worker safety Data security Remote sensing technology (sodar and lidar) Offshore resource assessment Impacts of climate change Uncertainty estimation Plant design and energy production estimatio Filled with important information ranging from basic fundamentals of wind to cutting-edge research topics, and accompanied by helpful references and discussion questions, this comprehensive text designed for an international audience is a vital reference that promotes consistent standards for wind assessment across the industry.

Book Fundamentals of Atmospheric Modeling

Download or read book Fundamentals of Atmospheric Modeling written by Mark Z. Jacobson and published by Cambridge University Press. This book was released on 2005-05-05 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

Download or read book Simulation of the Atmospheric Boundary Layer for Wind Energy Applications written by Nikola Marjanovic and published by . This book was released on 2015 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different grid nesting configurations, turbulence closures, and grid resolutions is evaluated by comparison to observation data. Improvement to simulation results from the use of more computationally expensive high resolution simulations is only found for the complex terrain simulation during the locally-driven event. Physical parameters, such as soil moisture, have a large effect on locally-forced events, and prognostic turbulence kinetic energy (TKE) schemes are found to perform better than non-local eddy viscosity turbulence closure schemes. Mesoscale models, however, do not resolve turbulence directly, which is important at finer grid resolutions capable of resolving wind turbine components and their interactions with atmospheric turbulence. Large-eddy simulation (LES) is a numerical approach that resolves the largest scales of turbulence directly by separating large-scale, energetically important eddies from smaller scales with the application of a spatial filter. LES allows higher fidelity representation of the wind speed and turbulence intensity at the scale of a wind turbine which parameterizations have difficulty representing. Use of high-resolution LES enables the implementation of more sophisticated wind turbine parameterizations to create a robust model for wind energy applications using grid spacing small enough to resolve individual elements of a turbine such as its rotor blades or rotation area. Generalized actuator disk (GAD) and line (GAL) parameterizations are integrated into WRF to complement its real-world weather modeling capabilities and better represent wind turbine airflow interactions, including wake effects. The GAD parameterization represents the wind turbine as a two-dimensional disk resulting from the rotation of the turbine blades. Forces on the atmosphere are computed along each blade and distributed over rotating, annular rings intersecting the disk. While typical LES resolution (10-20 m) is normally sufficient to resolve the GAD, the GAL parameterization requires significantly higher resolution (1-3 m) as it does not distribute the forces from the blades over annular elements, but applies them along lines representing individual blades. In this dissertation, the GAL is implemented into WRF and evaluated against the GAD parameterization from two field campaigns that measured the inflow and near-wake regions of a single turbine. The data-sets are chosen to allow validation under the weakly convective and weakly stable conditions characterizing most turbine operations. The parameterizations are evaluated with respect to their ability to represent wake wind speed, variance, and vorticity by comparing fine-resolution GAD and GAL simulations along with coarse-resolution GAD simulations. Coarse-resolution GAD simulations produce aggregated wake characteristics similar to both GAD and GAL simulations (saving on computational cost), while the GAL parameterization enables resolution of near wake physics (such as vorticity shedding and wake expansion) for high fidelity applications. For the first time, to our knowledge, this dissertation combines the capabilities of a mesoscale weather prediction model, LES, and high-resolution wind turbine parameterizations into one model capable of simulating a real array of wind turbines at a wind farm. WRF is used due to its sophisticated environmental physics models, frequent use in the atmospheric modeling community, and grid nesting with LES capabilities. Grid nesting is feeding lateral boundary condition data from a coarse resolution simulation to a finer resolution simulation contained within the coarse resolution simulation's domain. WRF allows the development of a grid nesting strategy from synoptic-scale to microscale LES relevant for wind farm simulations; this is done by building on the results from the investigation of model parameters for wind energy forecasting and the implementation of the GAD and GAL wind turbine parameterizations. The nesting strategy is coupled with a GAD parameterization to model the effects of wind turbine wakes on downstream turbines at a utility-scale Oklahoma wind farm. Simulation results are compared to dual-Doppler measurements that provide three-dimensional fields of horizontal wind speed and direction. The nesting strategy is able to produce realistic turbine wake effects, while differences with the measurements can mostly be attributed to the quality of the available weather input data.

Book Mesoscale Meteorological Modeling

Download or read book Mesoscale Meteorological Modeling written by Roger A. Pielke and published by Elsevier. This book was released on 2013-10-22 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: To effectively utilize mesoscale dynamical simulations of the atmosphere, it is necessary to have an understanding the basic physical and mathematical foundations of the models and to have an appreciation of how a particular atmospheric system works. Mesoscale Meteorological Modeling provides such an overview of mesoscale numerical modeling. Starting with fundamental concepts, this text can be used to evaluate the scientific basis of any simulation model that has been or will be developed. Basic material is provided for the beginner as well as more in-depth treatment for the specialist. This text is useful to both the practitioner and the researcher of the mesoscale phenomena.