EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Learning from Imbalanced Data Sets

Download or read book Learning from Imbalanced Data Sets written by Alberto Fernández and published by Springer. This book was released on 2018-10-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.

Book Imbalanced Classification with Python

Download or read book Imbalanced Classification with Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2020-01-14 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imbalanced classification are those classification tasks where the distribution of examples across the classes is not equal. Cut through the equations, Greek letters, and confusion, and discover the specialized techniques data preparation techniques, learning algorithms, and performance metrics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently develop robust models for your own imbalanced classification projects.

Book The Recent Advances in Transdisciplinary Data Science

Download or read book The Recent Advances in Transdisciplinary Data Science written by Henry Han and published by Springer Nature. This book was released on 2023-01-28 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First Southwest Data Science Conference, on The Recent Advances in Transdisciplinary Data Science, SDSC 2022, held in Waco, TX, USA, during March 25–26, 2022. The 14 full papers and 2 short papers included in this book were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Business and social data science; Health and biological data science; Applied data science, artificial intelligence, and data engineering.

Book Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods

Download or read book Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods written by Sarah Vluymans and published by Springer. This book was released on 2018-11-23 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes two main contributions: helping readers gain a deeper understanding of the underlying mathematical theory; and developing new, intuitive and well-performing classification approaches. The authors bridge the gap between the theoretical proposals of the mathematical model and important challenges in machine learning. The intended readership of this book includes anyone interested in learning more about fuzzy rough set theory and how to use it in practical machine learning contexts. Although the core audience chiefly consists of mathematicians, computer scientists and engineers, the content will also be interesting and accessible to students and professionals from a range of other fields.

Book Advances in Data Analysis with Computational Intelligence Methods

Download or read book Advances in Data Analysis with Computational Intelligence Methods written by Adam E Gawęda and published by Springer. This book was released on 2017-09-21 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tribute to Professor Jacek Żurada, who is best known for his contributions to computational intelligence and knowledge-based neurocomputing. It is dedicated to Professor Jacek Żurada, Full Professor at the Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, J.B. Speed School of Engineering, University of Louisville, Kentucky, USA, as a token of appreciation for his scientific and scholarly achievements, and for his longstanding service to many communities, notably the computational intelligence community, in particular neural networks, machine learning, data analyses and data mining, but also the fuzzy logic and evolutionary computation communities, to name but a few. At the same time, the book recognizes and honors Professor Żurada’s dedication and service to many scientific, scholarly and professional societies, especially the IEEE (Institute of Electrical and Electronics Engineers), the world’s largest professional technical professional organization dedicated to advancing science and technology in a broad spectrum of areas and fields. The volume is divided into five major parts, the first of which addresses theoretic, algorithmic and implementation problems related to the intelligent use of data in the sense of how to derive practically useful information and knowledge from data. In turn, Part 2 is devoted to various aspects of neural networks and connectionist systems. Part 3 deals with essential tools and techniques for intelligent technologies in systems modeling and Part 4 focuses on intelligent technologies in decision-making, optimization and control, while Part 5 explores the applications of intelligent technologies.

Book Data Preprocessing in Data Mining

Download or read book Data Preprocessing in Data Mining written by Salvador García and published by Springer. This book was released on 2014-08-30 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

Book Advances in Feature Selection for Data and Pattern Recognition

Download or read book Advances in Feature Selection for Data and Pattern Recognition written by Urszula Stańczyk and published by Springer. This book was released on 2017-11-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved. Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.

Book Data Preprocessing  Active Learning  and Cost Perceptive Approaches for Resolving Data Imbalance

Download or read book Data Preprocessing Active Learning and Cost Perceptive Approaches for Resolving Data Imbalance written by Rana, Dipti P. and published by IGI Global. This book was released on 2021-06-04 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance. Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.

Book Big Data and Smart Digital Environment

Download or read book Big Data and Smart Digital Environment written by Yousef Farhaoui and published by Springer. This book was released on 2019-02-21 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art of big data analysis and smart city. It includes issues which pertain to signal processing, probability models, machine learning, data mining, database, data engineering, pattern recognition, visualisation, predictive analytics, data warehousing, data compression, computer programming, smart city, etc. Data is becoming an increasingly decisive resource in modern societies, economies, and governmental organizations. Data science inspires novel techniques and theories drawn from mathematics, statistics, information theory, computer science, and social science. Papers in this book were the outcome of research conducted in this field of study. The latter makes use of applications and techniques related to data analysis in general and big data and smart city in particular. The book appeals to advanced undergraduate and graduate students, postdoctoral researchers, lecturers and industrial researchers, as well as anyone interested in big data analysis and smart city.

Book Machine Learning and Knowledge Discovery in Databases

Download or read book Machine Learning and Knowledge Discovery in Databases written by Peggy Cellier and published by Springer Nature. This book was released on 2020-03-27 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019.

Book Safety Causation Analysis in Sociotechnical Systems

Download or read book Safety Causation Analysis in Sociotechnical Systems written by Esmaeil Zarei and published by Springer Nature. This book was released on 2024 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine Intelligence Techniques for Data Analysis and Signal Processing

Download or read book Machine Intelligence Techniques for Data Analysis and Signal Processing written by Dilip Singh Sisodia and published by Springer Nature. This book was released on 2023-05-30 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the proceedings of the 4th International Conference on Machine Intelligence and Signal Processing (MISP2022). The contents of this book focus on research advancements in machine intelligence, signal processing, and applications. The book covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. It also includes the progress in signal processing to process the normal and abnormal categories of real-world signals such as signals generated from IoT devices, smart systems, speech, and videos and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), electromyogram (EMG), etc. This book proves a valuable resource for those in academia and industry.

Book Image and Graphics

    Book Details:
  • Author : Huchuan Lu
  • Publisher : Springer Nature
  • Release : 2023-10-28
  • ISBN : 303146317X
  • Pages : 384 pages

Download or read book Image and Graphics written by Huchuan Lu and published by Springer Nature. This book was released on 2023-10-28 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The five-volume set LNCS 14355, 14356, 14357, 14358 and 14359 constitutes the refereed proceedings of the 12th International Conference on Image and Graphics, ICIG 2023, held in Nanjing, China, during September 22–24, 2023. The 166 papers presented in the proceedings set were carefully reviewed and selected from 409 submissions. They were organized in topical sections as follows: computer vision and pattern recognition; computer graphics and visualization; compression, transmission, retrieval; artificial intelligence; biological and medical image processing; color and multispectral processing; computational imaging; multi-view and stereoscopic processing; multimedia security; surveillance and remote sensing, and virtual reality. The ICIG 2023 is a biennial conference that focuses on innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking. It will feature world-class plenary speakers, exhibits, and high-quality peer reviewed oral and poster presentations.

Book Model Optimization Methods for Efficient and Edge AI

Download or read book Model Optimization Methods for Efficient and Edge AI written by Pethuru Raj Chelliah and published by John Wiley & Sons. This book was released on 2025-01-09 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more. The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT). Other topics covered include: Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problems Generating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablers Compressing AI models so that computational, memory, storage, and network requirements can be substantially reduced Addressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous data Overcoming cyberattacks on mission-critical software systems by leveraging federated learning

Book Innovations in Computational Intelligence and Computer Vision

Download or read book Innovations in Computational Intelligence and Computer Vision written by Satyabrata Roy and published by Springer Nature. This book was released on 2023-11-13 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents high-quality, peer-reviewed papers from the International Conference on “Innovations in Computational Intelligence and Computer Vision (ICICV 2022),” hosted by Manipal University Jaipur, Rajasthan, India, on 24–25 November 2022. The book includes a collection of innovative ideas from researchers, scientists, academics, industry professionals and students. The book covers a variety of topics, such as artificial intelligence and computer vision, image processing and video analysis, applications and services of artificial intelligence and computer vision, interdisciplinary areas combining artificial intelligence and computer vision, and other innovative practices.

Book Artificial Intelligence and Soft Computing

Download or read book Artificial Intelligence and Soft Computing written by Leszek Rutkowski and published by Springer. This book was released on 2019-05-27 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 11508 and 11509 constitutes the refereed proceedings of of the 18th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2019, held in Zakopane, Poland, in June 2019. The 122 revised full papers presented were carefully reviewed and selected from 333 submissions. The papers included in the first volume are organized in the following five parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; pattern classification; artificial intelligence in modeling and simulation. The papers included in the second volume are organized in the following five parts: computer vision, image and speech analysis; bioinformatics, biometrics, and medical applications; data mining; various problems of artificial intelligence; agent systems, robotics and control.

Book Proceedings of Data Analytics and Management

Download or read book Proceedings of Data Analytics and Management written by Abhishek Swaroop and published by Springer Nature. This book was released on 2024-01-13 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original unpublished contributions presented at the International Conference on Data Analytics and Management (ICDAM 2023), held at London Metropolitan University, London, UK, during June 2023. The book covers the topics in data analytics, data management, big data, computational intelligence, and communication networks. The book presents innovative work by leading academics, researchers, and experts from industry which is useful for young researchers and students. The book is divided into four volumes.