EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hyperidentities  Boolean And De Morgan Structures

Download or read book Hyperidentities Boolean And De Morgan Structures written by Yuri Movsisyan and published by World Scientific. This book was released on 2022-09-20 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperidentities are important formulae of second-order logic, and research in hyperidentities paves way for the study of second-order logic and second-order model theory.This book illustrates many important current trends and perspectives for the field of hyperidentities and their applications, of interest to researchers in modern algebra and discrete mathematics. It covers a number of directions, including the characterizations of the Boolean algebra of n-ary Boolean functions and the distributive lattice of n-ary monotone Boolean functions; the classification of hyperidentities of the variety of lattices, the variety of distributive (modular) lattices, the variety of Boolean algebras, and the variety of De Morgan algebras; the characterization of algebras with aforementioned hyperidentities; the functional representations of finitely-generated free algebras of various varieties of lattices and bilattices via generalized Boolean functions (De Morgan functions, quasi-De Morgan functions, super-Boolean functions, super-De Morgan functions, etc); the structural results for De Morgan algebras, Boole-De Morgan algebras, super-Boolean algebras, bilattices, among others.While problems of Boolean functions theory are well known, the present book offers alternative, more general problems, involving the concepts of De Morgan functions, quasi-De Morgan functions, super-Boolean functions, and super-De Morgan functions, etc. In contrast to other generalized Boolean functions discovered and investigated so far, these functions have clearly normal forms. This quality is of crucial importance for their applications in pure and applied mathematics, especially in discrete mathematics, quantum computation, quantum information theory, quantum logic, and the theory of quantum computers.

Book Hyperidentities  Boolean and de Morgan Structures

Download or read book Hyperidentities Boolean and de Morgan Structures written by Yuri Movsisyan and published by World Scientific Publishing Company. This book was released on 2022-10-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperidentities are important formulae of second-order logic, and research in hyperidentities paves way for the study of second-order logic and second-order model theory.This book illustrates many important current trends and perspectives for the field of hyperidentities and their applications, of interest to researchers in modern algebra and discrete mathematics. It covers a number of directions, including the characterizations of the Boolean algebra of n-ary Boolean functions and the distributive lattice of n-ary monotone Boolean functions; the classification of hyperidentities of the variety of lattices, the variety of distributive (modular) lattices, the variety of Boolean algebras, and the variety of De Morgan algebras; the characterization of algebras with aforementioned hyperidentities; the functional representations of finitely-generated free algebras of various varieties of lattices and bilattices via generalized Boolean functions (De Morgan functions, quasi-De Morgan functions, super-Boolean functions, super-De Morgan functions, etc); the structural results for De Morgan algebras, Boole-De Morgan algebras, super-Boolean algebras, bilattices, among others.While problems of Boolean functions theory are well known, the present book offers alternative, more general problems, involving the concepts of De Morgan functions, quasi-De Morgan functions, super-Boolean functions, and super-De Morgan functions, etc. In contrast to other generalized Boolean functions discovered and investigated so far, these functions have clearly normal forms. This quality is of crucial importance for their applications in pure and applied mathematics, especially in discrete mathematics, quantum computation, quantum information theory, quantum logic, and the theory of quantum computers.

Book Boolean Algebra

    Book Details:
  • Author : R. L. Goodstein
  • Publisher : Courier Corporation
  • Release : 2012-08-15
  • ISBN : 0486154971
  • Pages : 162 pages

Download or read book Boolean Algebra written by R. L. Goodstein and published by Courier Corporation. This book was released on 2012-08-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2001 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Function Algebras on Finite Sets

Download or read book Function Algebras on Finite Sets written by Dietlinde Lau and published by Springer Science & Business Media. This book was released on 2006-11-23 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.

Book Distributive Lattices

Download or read book Distributive Lattices written by Raymond Balbes and published by . This book was released on 2011-11-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discussing the foundations of the theory of distributive lattices and the techniques used in this field, this resource also presents a number of special topics to which the theory is applied. In developing the theory, the authors have made use of the methods and tools of universal algebra and elementary category theory.

Book Universal Algebra  Algebraic Logic  and Databases

Download or read book Universal Algebra Algebraic Logic and Databases written by Boris Isaakovich Plotkin and published by Boom Koninklijke Uitgevers. This book was released on 1994-01-31 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern algebra, which not long ago seemed to be a science divorced from real life, now has numerous applications. Many fine algebraic structures are endowed with meaningful contents. Now and then practice suggests new and unexpected structures enriching algebra. This does not mean that algebra has become merely a tool for applications. Quite the contrary, it significantly benefits from the new connections. The present book is devoted to some algebraic aspects of the theory of databases. It consists of three parts. The first part contains information about universal algebra, algebraic logic is the subject of the second part, and the third one deals with databases. The algebraic material of the flI'St two parts serves the common purpose of applying algebra to databases. The book is intended for use by mathematicians, and mainly by algebraists, who realize the necessity to unite theory and practice. It is also addressed to programmers, engineers and all potential users of mathematics who want to construct their models with the help of algebra and logic. Nowadays, the majority of professional mathematicians work in close cooperation with representatives of applied sciences and even industrial technology. It is neces sary to develop an ability to see mathematics in different particular situations. One of the tasks of this book is to promote the acquisition of such skills.

Book M Solid Varieties of Algebras

Download or read book M Solid Varieties of Algebras written by Jörg Koppitz and published by Springer Science & Business Media. This book was released on 2006-02-10 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.

Book Quasi Uniform Spaces

Download or read book Quasi Uniform Spaces written by Peter Fletcher and published by Routledge. This book was released on 2018-04-27 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since quasi-uniform spaces were defined in 1948, a diverse and widely dispersed literatureconcerning them has emerged. In Quasi-Uniform Spaces, the authors present a comprehensivestudy of these structures, together with the theory of quasi-proximities. In additionto new results unavailable elsewhere, the volume unites fundamental materialheretofore scattered throughout the literature.Quasi-Uniform Spaces shows by example that these structures provide a natural approachto the study of point-set topology. It is the only source for many results related to completeness,and a primary source for the study of both transitive and quasi-metric spaces.Included are H. Junnila's analogue of Tamano's theorem, J. Kofner's result showing thatevery GO space is transitive, and R. Fox's example of a non-quasi-metrizable r-space. Inaddition to numerous interesting problems mentioned throughout the text , 22 formalresearch problems are featured. The book nurtures a radically different viewpoint oftopology , leading to new insights into purely topological problems.Since every topological space admits a quasi-uniformity, the study of quasi-uniformspaces can be seen as no less general than the study of topological spaces. For such study,Quasi-Uniform Spaces is a necessary, self-contained reference for both researchers andgraduate students of general topology . Information is made particularly accessible withthe inclusion of an extensive index and bibliography .

Book An Invitation to General Algebra and Universal Constructions

Download or read book An Invitation to General Algebra and Universal Constructions written by George M. Bergman and published by Springer. This book was released on 2015-02-05 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.

Book Rings that are Nearly Associative

Download or read book Rings that are Nearly Associative written by Konstantin Aleksandrovich Zhevlakov and published by . This book was released on 1982 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topology and Robotics

    Book Details:
  • Author : Michael Farber
  • Publisher : American Mathematical Soc.
  • Release : 2007
  • ISBN : 0821842463
  • Pages : 202 pages

Download or read book Topology and Robotics written by Michael Farber and published by American Mathematical Soc.. This book was released on 2007 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering.

Book Lectures on Representations of Surface Groups

Download or read book Lectures on Representations of Surface Groups written by François Labourie and published by . This book was released on 2013 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of these notes is the character variety of representations of a surface group in a Lie group. The author emphasizes the various points of view (combinatorial, differential, and algebraic) and is interested in the description of its smooth points, symplectic structure, volume and connected components. He also shows how a three manifold bounded by the surface leaves a trace in this character variety. These notes were originally designed for students with only elementary knowledge of differential geometry and topology. In the first chapters, the author does not focus on the details of the differential geometric constructions and refers to classical textbooks, while in the more advanced chapters proofs occasionally are provided only for special cases where they convey the flavor of the general arguments. These notes might also be used by researchers entering this fast expanding field as motivation for further studies. The concluding paragraph of every chapter provides suggestions for further research.

Book Semigroups Of Matrices

Download or read book Semigroups Of Matrices written by Jan Okninski and published by World Scientific. This book was released on 1998-07-31 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n × n matrices over a field K (or, more generally, skew linear semigroups — if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.

Book An Extension of the Galois Theory of Grothendieck

Download or read book An Extension of the Galois Theory of Grothendieck written by André Joyal and published by American Mathematical Soc.. This book was released on 1984 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we compare, in a precise way, the concept of Grothendieck topos to the classical notion of topological space. The comparison takes the form of a two-fold extension of the idea of space.

Book How To Measure The Infinite  Mathematics With Infinite And Infinitesimal Numbers

Download or read book How To Measure The Infinite Mathematics With Infinite And Infinitesimal Numbers written by Vieri Benci and published by World Scientific. This book was released on 2019-02-19 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'This text shows that the study of the almost-forgotten, non-Archimedean mathematics deserves to be utilized more intently in a variety of fields within the larger domain of applied mathematics.'CHOICEThis book contains an original introduction to the use of infinitesimal and infinite numbers, namely, the Alpha-Theory, which can be considered as an alternative approach to nonstandard analysis.The basic principles are presented in an elementary way by using the ordinary language of mathematics; this is to be contrasted with other presentations of nonstandard analysis where technical notions from logic are required since the beginning. Some applications are included and aimed at showing the power of the theory.The book also provides a comprehensive exposition of the Theory of Numerosity, a new way of counting (countable) infinite sets that maintains the ancient Euclid's Principle: 'The whole is larger than its parts'. The book is organized into five parts: Alpha-Calculus, Alpha-Theory, Applications, Foundations, and Numerosity Theory.

Book Residuated Lattices  An Algebraic Glimpse at Substructural Logics

Download or read book Residuated Lattices An Algebraic Glimpse at Substructural Logics written by Nikolaos Galatos and published by Elsevier. This book was released on 2007-04-25 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.