Download or read book Analytic Hyperbolic Geometry and Albert Einstein s Special Theory of Relativity written by Abraham A. Ungar and published by World Scientific. This book was released on 2008 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. It introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Newtonian velocity addition is the common vector addition, which is both commutative and associative. The resulting vector spaces, in turn, form the algebraic setting for the standard model of Euclidean geometry. In full analogy, Einsteinian velocity addition is a gyrovector addition, which is both gyrocommutative and gyroassociative. The resulting gyrovector spaces, in turn, form the algebraic setting for the Beltrami–Klein ball model of the hyperbolic geometry of Bolyai and Lobachevsky. Similarly, Mצbius addition gives rise to gyrovector spaces that form the algebraic setting for the Poincarי ball model of hyperbolic geometry. In full analogy with classical results, the book presents a novel relativistic interpretation of stellar aberration in terms of relativistic gyrotrigonometry and gyrovector addition. Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. The novel relativistic resultant mass of the system, concentrated at the relativistic center of mass, dictates the validity of the dark matter and the dark energy that were introduced by cosmologists as ad hoc postulates to explain cosmological observations about missing gravitational force and late-time cosmic accelerated expansion. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying analytic hyperbolic geometry.
Download or read book Hyperbolic Partial Differential Equations written by Serge Alinhac and published by Springer Science & Business Media. This book was released on 2009-06-17 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.
Download or read book Hyperbolic Equations and General Relativity written by Marica Minucci and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is divided into three parts. In the first part, the hyperbolic equations' theory is analysed, the second part concerns the Cauchy problem in General Relativity, whereas the third part gives a modern perspective of General Relativity.In the first part, the study of systems of partial differential equations allows the introduction of the concept of wave-like propagation and the definition of hyperbolic equation is given. Thus, once the definition of Riemann kernel is given, Riemann's method to solve a hyperbolic equation in two variables is shown. The discussion moves on the fundamental solutions and its relation to Riemann kernel is pointed out. Therefore, the study of the fundamental solutions concludes by showing how to build them providing some examples of solution with odd and even number of variables. Moreover, the fundamental solution of the scalar wave equation with smooth initial conditions is studied.In the second part, following the work of Fourès-Bruhat, the problem of finding a solution to the Cauchy problem for Einstein field equations in vacuum with non-analytic initial data is presented by first studying under which assumptions second-order systems of partial differential equations, linear and hyperbolic, with n functions and four variables admit a solution. Hence, it is shown how to turn non-linear systems of partial differential equations into linear systems of the same type for which the previous results hold. These considerations allow us to prove the existence and uniqueness of the solution to the Cauchy problem for Einstein's vacuum field equations with non-analytic initial data. Eventually, the causal structure of space-time is studied. The definitions of strong causality, stable causality and global hyperbolicity are given and the relation between the property of global hyperbolicity and the existence of Cauchy surfaces is stressed. In the third part, Riemann's method is used to study the news function describing the gravitational radiation produced in axisymmetric black hole collisions at the speed of light. More precisely, since the perturbative field equations may be reduced to equations in two independent variables, as was proved by D'Eath and Payne, the Green function can be analysed by studying the corresponding second-order hyperbolic operator with variable coefficients. Thus, an integral representation of the solution in terms of the Riemann kernel function can be given.
Download or read book Hyperbolic Partial Differential Equations written by Peter D. Lax and published by American Mathematical Soc.. This book was released on 2006 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves. The second part describes finite difference approximations of hyperbolic equations, presents a streamlined version of the Lax-Phillips scattering theory, and covers basic concepts and results for hyperbolic systems of conservation laws, an active research area today. Four brief appendices sketch topics that are important or amusing, such as Huygens' principle and a theory of mixed initial and boundary value problems. A fifth appendix by Cathleen Morawetz describes a nonstandard energy identity and its uses. -- Back cover.
Download or read book Geometric Analysis of Hyperbolic Differential Equations An Introduction written by S. Alinhac and published by Cambridge University Press. This book was released on 2010-05-20 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
Download or read book The Geometry of Special Relativity written by Tevian Dray and published by CRC Press. This book was released on 2012-07-02 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometry of Special Relativity provides an introduction to special relativity that encourages readers to see beyond the formulas to the deeper geometric structure. The text treats the geometry of hyperbolas as the key to understanding special relativity. This approach replaces the ubiquitous γ symbol of most standard treatments with the appropriate hyperbolic trigonometric functions. In most cases, this not only simplifies the appearance of the formulas, but also emphasizes their geometric content in such a way as to make them almost obvious. Furthermore, many important relations, including the famous relativistic addition formula for velocities, follow directly from the appropriate trigonometric addition formulas. The book first describes the basic physics of special relativity to set the stage for the geometric treatment that follows. It then reviews properties of ordinary two-dimensional Euclidean space, expressed in terms of the usual circular trigonometric functions, before presenting a similar treatment of two-dimensional Minkowski space, expressed in terms of hyperbolic trigonometric functions. After covering special relativity again from the geometric point of view, the text discusses standard paradoxes, applications to relativistic mechanics, the relativistic unification of electricity and magnetism, and further steps leading to Einstein’s general theory of relativity. The book also briefly describes the further steps leading to Einstein’s general theory of relativity and then explores applications of hyperbola geometry to non-Euclidean geometry and calculus, including a geometric construction of the derivatives of trigonometric functions and the exponential function.
Download or read book The Cauchy Problem in General Relativity written by Hans Ringström and published by European Mathematical Society. This book was released on 2009 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.
Download or read book Partial Differential Equations in General Relativity written by Alan D. Rendall and published by . This book was released on 2008-04-03 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text that will bring together PDE theory, general relativity and astrophysics to deliver an overview of theory of partial differential equations for general relativity. The text will include numerous examples and provide a unique resource for graduate students in mathematics and physics, numerical relativity and cosmology.
Download or read book General Relativity and the Einstein Equations written by Yvonne Choquet-Bruhat and published by Oxford University Press. This book was released on 2009 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.
Download or read book A New Perspective on Relativity written by Bernard H. Lavenda and published by World Scientific. This book was released on 2012 with total page 695 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting off from noneuclidean geometries, apart from the method of Einstein's equations, this book derives and describes the phenomena of gravitation and diffraction. A historical account is presented, exposing the missing link in Einstein's construction of the theory of general relativity: the uniformly rotating disc, together with his failure to realize, that the Beltrami metric of hyperbolic geometry with constant curvature describes exactly the uniform acceleration observed. This book also explores these questions: * How does time bend? * Why should gravity propagate at the speed of light? * How does the expansion function of the universe relate to the absolute constant of the noneuclidean geometries? * Why was the Sagnac effect ignored? * Can Maxwell's equations accommodate mass? * Is there an inertia due solely to polarization? * Can objects expand in elliptic geometry like they contract in hyperbolic geometry?
Download or read book Elliptic Hyperbolic Partial Differential Equations written by Thomas H. Otway and published by Springer. This book was released on 2015-07-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example: • The heating of fusion plasmas by electromagnetic waves • The behaviour of light near a caustic • Extremal surfaces in the space of special relativity • The formation of rapids; transonic and multiphase fluid flow • The dynamics of certain models for elastic structures • The shape of industrial surfaces such as windshields and airfoils • Pathologies of traffic flow • Harmonic fields in extended projective space They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvature for surfaces: topics in pure mathematics which themselves have important applications. Elliptic−Hyperbolic Partial Differential Equations is derived from a mini-course given at the ICMS Workshop on Differential Geometry and Continuum Mechanics held in Edinburgh, Scotland in June 2013. The focus on geometry in that meeting is reflected in these notes, along with the focus on quasilinear equations. In the spirit of the ICMS workshop, this course is addressed both to applied mathematicians and to mathematically-oriented engineers. The emphasis is on very recent applications and methods, the majority of which have not previously appeared in book form.
Download or read book The Einstein Equations and the Large Scale Behavior of Gravitational Fields written by Piotr T. Chruściel and published by Springer Science & Business Media. This book was released on 2004 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accompanying DVD-ROM contains the electronic proceedings of the summer school on mathematical general relativity and global properties of solutions of Einstein's equations held at Cargèse, Corsica, France, July 20-Aug. 10, 2002.
Download or read book Special Relativity Electrodynamics and General Relativity written by John B. Kogut and published by Academic Press. This book was released on 2018-01-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special Relativity, Electrodynamics, and General Relativity: From Newton to Einstein is intended to teach students of physics, astrophysics, astronomy, and cosmology how to think about special and general relativity in a fundamental but accessible way. Designed to render any reader a "master of relativity, all material on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Fully revised and expanded second edition with improved figures - Enlarged discussion of dynamics and the relativistic version of Newton's second law - Resolves the twin paradox from the principles of special and general relativity - Includes new chapters which derive magnetism from relativity and electrostatics - Derives Maxwell's equations from Gauss' law and the principles of special relativity - Includes new chapters on differential geometry, space-time curvature, and the field equations of general relativity - Introduces black holes and gravitational waves as illustrations of the principles of general relativity and relates them to the 2015 and 2017 observational discoveries of LIGO
Download or read book The Global Nonlinear Stability of the Minkowski Space PMS 41 written by Demetrios Christodoulou and published by Princeton University Press. This book was released on 2014-07-14 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter. Originally published in 1994. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Download or read book Introduction to 3 1 Numerical Relativity written by Miguel Alcubierre and published by OUP Oxford. This book was released on 2008-04-10 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail are the following: the initial data problem, hyperbolic reductions of the field equations, gauge conditions, the evolution of black hole space-times, relativistic hydrodynamics, gravitational wave extraction and numerical methods. There is also a final chapter with examples of some simple numerical space-times. The book is aimed at both graduate students and researchers in physics and astrophysics, and at those interested in relativistic astrophysics.
Download or read book Lectures on Non perturbative Canonical Gravity written by Abhay Ashtekar and published by World Scientific. This book was released on 1991 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Notes prepared in Collaboration with Ranjeet S Tate It is now generally recognized that perturbative field theoretical methods that have been highly successful in the quantum description of non-gravitational interactions cannot be used as a means of constructing a quantum theory of gravity. The primary aim of the book is to present an up- to-date account of a non-perturbative, canonical quantization program for gravity. Many of the technical results obtained in the process are of interest also to differential geometry, classical general relativity and QCD. The program as a whole was highlighted in virtually every major conference in gravitational physics over the past three years.
Download or read book Conformal Methods in General Relativity written by Juan A. Valiente Kroon and published by Cambridge University Press. This book was released on 2016-07-21 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic and self-contained account, which adopts a geometric approach to study the solutions of Einstein's theory of gravity.