EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hydrodynamics with Chiral Anomaly and Charge Separation in Relativistic Heavy Ion Collisions

Download or read book Hydrodynamics with Chiral Anomaly and Charge Separation in Relativistic Heavy Ion Collisions written by and published by . This book was released on 2016 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction a phenomenon known as the Chiral Magnetic Effect (CME). The quark- gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. We discuss the implications for the search of CME.

Book Soft and Hard Probes of QCD Topological Structures in Relativistic Heavy Ion Collisions

Download or read book Soft and Hard Probes of QCD Topological Structures in Relativistic Heavy Ion Collisions written by Shuzhe Shi and published by Springer. This book was released on 2020-09-20 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis makes significant advances in the quantitative understanding of two intrinsically linked yet technically very different phenomena in quantum chromodynamics (QCD). Firstly, the thesis investigates the soft probe of strong interaction topological fluctuations in the quark-gluon plasma (QGP) which is made possible via the anomalous chiral transport effects induced by such fluctuations. Here, the author makes contributions towards establishing the first comprehensive tool for quantitative prediction of the chiral magnetic effect in the QGP that is produced in heavy ion collision experiments. Secondly, the thesis deals with the hard probe of strongly coupled QGP created in heavy-ion collisions. In particular, this study addresses the basic question related to the nonperturbative color structure in the QGP via jet energy loss observables. The author further develops the CUJET computational model for jet quenching and uses it to analyze the topological degrees of freedom in quark-gluon plasma. The contributions this thesis makes towards these highly-challenging problems have already generated widespread impacts in the field of quark-gluon plasma and high-energy nuclear collisions.

Book Strongly Interacting Matter in Magnetic Fields

Download or read book Strongly Interacting Matter in Magnetic Fields written by Dmitri Kharzeev and published by Springer. This book was released on 2014-07-08 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important new theoretical tool that will be revisited and which made much of the progress surveyed in this book possible is the holographic principle - the correspondence between quantum field theory and gravity in extra dimensions. Edited and authored by the pioneers and leading experts in this newly emerging field, this book offers a valuable resource for a broad community of physicists and graduate students.

Book Soft and Hard Probes of QCD Topological Structures in Relativistic Heavy Ion Collisions

Download or read book Soft and Hard Probes of QCD Topological Structures in Relativistic Heavy Ion Collisions written by Shuzhe Shi and published by Springer Nature. This book was released on 2019-08-30 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis makes significant advances in the quantitative understanding of two intrinsically linked yet technically very different phenomena in quantum chromodynamics (QCD). Firstly, the thesis investigates the soft probe of strong interaction topological fluctuations in the quark-gluon plasma (QGP) which is made possible via the anomalous chiral transport effects induced by such fluctuations. Here, the author makes contributions towards establishing the first comprehensive tool for quantitative prediction of the chiral magnetic effect in the QGP that is produced in heavy ion collision experiments. Secondly, the thesis deals with the hard probe of strongly coupled QGP created in heavy-ion collisions. In particular, this study addresses the basic question related to the nonperturbative color structure in the QGP via jet energy loss observables. The author further develops the CUJET computational model for jet quenching and uses it to analyze the topological degrees of freedom in quark-gluon plasma. The contributions this thesis makes towards these highly-challenging problems have already generated widespread impacts in the field of quark-gluon plasma and high-energy nuclear collisions.

Book Proceedings of the XXIV DAE BRNS High Energy Physics Symposium  Jatni  India

Download or read book Proceedings of the XXIV DAE BRNS High Energy Physics Symposium Jatni India written by Bedangadas Mohanty and published by Springer Nature. This book was released on 2022-10-05 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents proceedings from the XXIV DAE-BRNS High Energy Physics (HEP) Symposium 2020, held at the National Institute of Science Education and Research, Jatni, Odisha, India. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Standard Model Physics, (2) Beyond Standard Model Physics, (3) Relativistic Heavy-Ion Physics & QCD, (4) Neutrino Physics, (5) Particle Astrophysics & Cosmology, (6) Detector Development Future Facilities and Experiments, (7) Formal Theory, (8) Societal Applications: Medical Physics, Imaging, etc.

Book Relativistic Hydrodynamics

Download or read book Relativistic Hydrodynamics written by Luciano Rezzolla and published by OUP Oxford. This book was released on 2013-09-26 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.

Book Quasiparticle Anisotropic Hydrodynamics in Ultra relativistic Heavy ion Collisions

Download or read book Quasiparticle Anisotropic Hydrodynamics in Ultra relativistic Heavy ion Collisions written by Mubarak Aydh K. Alqahtani and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last century, matter was confirmed to be made up from molecules which consist of two atoms or more. The atom itself consists of a nucleus made of protons and neutrons, and electrons "circling'' around the nucleus. The number of electrons or protons distinguish different elements. Later on, protons and neutrons were found not to be elementary particles but rather composite particles. The question turned then to be what are protons and neutrons made of and this is the focus of elementary particle physics. According to the standard model, protons and neutrons are made up of quarks and gluons. The theory that describes quarks and gluons is called quantum chromodynamics (QCD). According to this theory, quarks and gluons can not be detected freely; they appear only inside hadrons but are never observed freely (confinement). However, at high temperatures and/or densities a transition may happen where quarks and gluons do not exist in bound states (hadrons) anymore but rather exist freely (the asymptotic freedom). This phase of the nuclear matter is known as the quark-gluon plasma (QGP).To learn more about the QCD phase diagram, mainly the confinement and de-confinement transition, many different experiments have been performed from fixed target experiments to high-energy heavy-ion collisions in almost three decades. The discovery of QGP came from ultrarelativistic heavy-ion collision (URHIC) experiments. By ultrarelativistic heavy-ion collisions, we mean heavy ions like gold or lead that have been accelerated to speeds which are close to the speed of light (the ion momentum is much larger than its rest mass). Nowadays, ultrarelativistic heavy-ion collision experiments at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are being used to create and study the quark-gluon plasma. From the early days after confirming the existence of the QGP, relativistic hydrodynamics has been used to describe the hadron spectra and collective flow seen in these experiments and has been quite successful. Since then, different approaches have been developed to model the physics of the QGP. The first approach used was ideal hydrodynamics where the QGP is assumed to behave like a perfect fluid with no viscosity. However, improvements in both the experimental and theoretical sides demonstrated the importance of including dissipative (viscous) effects in QGP modeling. The resulting relativistic viscous hydrodynamics models have been quite successful in describing the data. Despite this success, studies found that the QGP generated in URHICs is a highly momentum-space anisotropic plasma which means that viscous hydrodynamics will break down in some situations. To take this into account, anisotropic hydrodynamics (aHydro) was developed. In aHydro, one includes the momentum-space anisotropies in the distribution function at leading-order, whereas viscous hydrodynamics is expanded around the isotropic distribution function as the leading term and the viscous effects are included as correction terms. In this study, we present a new method for imposing a realistic equation of state in anisotropic hydrodynamics which is called quasiparticle anisotropic hydrodynamics (aHydroQP). In this method, we introduce a single finite-temperature quasiparticle mass which is fit to QCD lattice data. By taking moments of the Boltzmann equation assuming an anisotropic distribution function, we obtain a set of coupled partial differential equations which can be used to describe the 3+1d spacetime evolution of the QGP. Due to the numerical difficulties and the need to understand this new method more, instead of considering the 3+1d case immediately, we begin by studying two simpler cases. First, we specialize to the case of a 0+1d system undergoing boost-invariant Bjorken expansion and compare with the standard method of imposing the equation of state in anisotropic hydrodynamics (aHydro). We find practically no differences between the two methods results for the temperature evolution and the scaled energy density. When we compare the pressure anisotropy, we see only small differences, however, we find significant differences in the evolution of the bulk pressure correction. Second, we present the results in azimuthally-symmetric boost-invariant (1+1d) systems and compare the quasiparticle model with the standard aHydro model and second order viscous hydrodynamics. We compare the three methods' predictions for the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio. We show that they agree well for small shear viscosity to entropy density ratio, but show clear differences at large values of shear viscosity to entropy density ratio. Third, and most importantly, we present the phenomenological predictions of 3+1d quasiparticle anisotropic hydrodynamics compared with LHC 2.76 TeV Pb-Pb collisions. We present comparisons of charged-hadron multiplicity, identified-particle spectra, identified-particle average transverse momentum, charged-particle elliptic flow, identified-particle elliptic flow, elliptic flow as a function of pseudorapidity, and HBT radii. We find good agreement when compared with ALICE data. Looking to the future, we plan to include next-leading-order anisotropic hydrodynamics corrections by including the off-diagonal terms of the anisotropy tensor in quasiparticle anisotropic hydrodynamics. However, since this will be very hard and numerically intense, we consider first next-leading-order anisotropic hydrodynamics using the standard method for imposing the equation of state. To do so, we Taylor-expand assuming small off-diagonal terms to make the formalism easier and numerically tractable. Then, by taking moments of the Boltzmann equation, we find the dynamical equations needed to model the full 3+1d system. In this part of the work, we present only the theory setup and leave the numerical analysis for a future work.

Book Modeling Relativistic Heavy Ion Collisions

Download or read book Modeling Relativistic Heavy Ion Collisions written by Sen Cheng and published by . This book was released on 2002 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ultrarelativistic Heavy Ion Collisions

Download or read book Ultrarelativistic Heavy Ion Collisions written by Ramona Vogt and published by Elsevier. This book was released on 2007-06-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed for advanced undergraduate and graduate students in high energy heavy-ion physics. It is relevant for students who will work on topics being explored at RHIC and the LHC. In the first part, the basic principles of these studies are covered including kinematics, cross sections (including the quark model and parton distribution functions), the geometry of nuclear collisions, thermodynamics, hydrodynamics and relevant aspects of lattice gauge theory at finite temperature. The second part covers some more specific probes of heavy-ion collisions at these energies: high mass thermal dileptons, quarkonium and hadronization. The second part also serves as extended examples of concepts learned in the previous part. Both parts contain examples in the text as well as exercises at the end of each chapter. - Designed for students and newcomers to the field- Focuses on hard probes and QCD- Covers all aspects of high energy heavy-ion physics- Includes worked example problems and exercises

Book Hydrodynamics of Ultra relativistic Heavy ion Collisions

Download or read book Hydrodynamics of Ultra relativistic Heavy ion Collisions written by Ming-chung Chu and published by . This book was released on 1987 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Short Course on Relativistic Heavy Ion Collisions

Download or read book A Short Course on Relativistic Heavy Ion Collisions written by Asis Kumar Chaudhuri and published by Iop Expanding Physics. This book was released on 2014-10-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some ideas/concepts in relativistic heavy ion collisions are discussed. To a large extent, the discussions are non-comprehensive and non-rigorous. It is intended for fresh graduate students of Homi Bhabha National Institute, Kolkata Centre, who are intending to pursue career in theoretical /experimental high energy nuclear physics. Comments and criticisms will be appreciated

Book Strangeness Production and Strange V0   Charged Hadron Correlation in Heavy ion Collisions

Download or read book Strangeness Production and Strange V0 Charged Hadron Correlation in Heavy ion Collisions written by Feng Zhao and published by . This book was released on 2014 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: In relativistic heavy-ion collisions, experimental evidence indicates that a new form of matter with de-confined quarks and gluons named the Quark-Gluon Plasma(QGP) has been created. The Relativistic Heavy Ion Collider (RHIC) provides a unique opportunity to study the QGP matter. Strange hadron production is believed to be sensitive to parton dynamics in heavy-ion collisions. In particular, the strange quark production rate and its subsequent evolution in the dense partonic medium depend on the beam energy and the net baryon density. The productions of K0s, [Lambda], [Xi], [Omega] at mid-rapidity from Au+Au collisions at the beam energies of 7.7, 11.5, 19.6, 27, and 39GeV from the RHIC Beam Energy Scan Program are measured. We investigate the strangeness enhancement and ratios of anti-baryon to baryon yields as a function of beam energy at RHIC. Nuclear modification factors and ratios of baryon to meson yields are also studied. Implications on collision dynamics due to the increase in the baryon chemical potential at low beam energy and constraints on chemical freeze-out parameters will also be discussed in this thesis. Parity-odd domains are theorized to form inside the QGP and to cause electric charge separation with respect to the reaction plane in the relativistic heavy-ion collisions via the Chiral Magnetic Effect (CME). Such charge separation has been studied at RHIC and LHC via the difference in two particle correlation between the opposite charge and same charge hadrons. The [Lambda](Lambda) and K0s particles are charge-neutral, and are supposed to bear no charge separation effects due to CME. We study the correlation between the neutral particle and charged hadron to investigate background for charged hadron correlation. In addition, the large angular momentum in heavy-ion collisions is predicted to lead to the Chiral Vortical Effect (CVE) which induces a baryon number separation, in analogy with the electric charge separation caused by CME. We carried out a study of [Lambda] - p correlations to search for the CVE. We present measurements of correlations for [Lambda] - h±, K0s - p, [Lambda] - p, in Au+Au collisions at 39GeV and 200GeV, to study the electric charge and baryon number separations across the reaction plane.

Book Introduction to Relativistic Heavy Ion Collisions

Download or read book Introduction to Relativistic Heavy Ion Collisions written by L. P. Csernai and published by . This book was released on 1994-05-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.

Book Hydrodynamics and Relativistic Heavy ion Collisions

Download or read book Hydrodynamics and Relativistic Heavy ion Collisions written by and published by . This book was released on 1983 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The hydrodynamic model as applied to heavy-ion collisions is introduced. The Euler equations are derived for both relativistic and non-relativistic domains. The effects of imposing relativistic invariance are discussed. Concepts proposed to analyze 4.pi. exclusive reactions are introduced. Selected theoretical results are presented for reactions in which the projectile has a laboratory energy of 400 MeV per nucleon to 100 GeV per nucleon.

Book Relativistic Hydrodynamics

Download or read book Relativistic Hydrodynamics written by Luciano Rezzolla and published by Oxford University Press, USA. This book was released on 2018-06-14 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet." Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.

Book AdS CFT Correspondence and Hydrodynamics of Relativistic Heavy Ion Collisions

Download or read book AdS CFT Correspondence and Hydrodynamics of Relativistic Heavy Ion Collisions written by James Ethan Alsup and published by . This book was released on 2010 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: The experiments performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab have discovered a state of matter called the strongly coupled quark-gluon plasma (sQGP). The strong coupling has limited the ability of the standard theory to describe such matter, namely Quantum Chromodynamics (QCD). However, string theory̕'s anti- de Sitter/conformal field theory (AdS/CFT) correspondence has provided a new way to study the situation and in an analytical manner. So far, hydrodynamic properties of RHIC's plasma, such as elliptic flow and longitudinal expansion, have been seen to follow from classical supergravity calculations. In this dissertation I discuss some of the field's development as well as the research done by the author and collaborators.

Book Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration

Download or read book Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration written by Quan Wang and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been suggested that local parity violation (LPV) in Quantum Chromodynamics (QCD) would lead to charge separation of quarks by the Chiral Magnetic Effect (CME) in heavy ion collisions. Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration presents the detailed study of charge separation with respect to the event plane. Results on charge multiplicity asymmetry in Au+Au and d+Au collisions at 200 GeV by the STAR experiment are reported. It was found that the correlation results could not be explained by CME alone. Additionally, the charge separation signal as a function of the measured azimuthal angle range as well as the event-by-event anisotropy parameter are studied. These results indicate that the charge separation effect appears to be in-plane rather than out-of-plane. It is discovered that the charge separation effect is proportional to the event-by-event azimuthal anisotropy and consistent with zero in events with zero azimuthal anisotropy. These studies suggest that the charge separation effect, within the statistical error, may be a net effect of event anisotropy and correlated particle production. A potential upper limit on the CME is also presented through this data.