EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book 3 D Deformable Registration Using a Statistical Atlas with Applications in Medicine

Download or read book 3 D Deformable Registration Using a Statistical Atlas with Applications in Medicine written by Mei Chen and published by . This book was released on 1999 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "Registering medical images of different individuals is difficult due to inherent anatomical variabilities and possible pathologies. This thesis focuses on characterizing non-pathological variations in human brain anatomy, and applying such knowledge to achieve accurate 3-D deformable registration. Inherent anatomical variations are automatically extracted by deformably registering training data with an expert-segmented 3-D image, a digital brain atlas. Statistical properties of the density and geometric variations in brain anatomy are measured and encoded into the atlas to build a statistical atlas. These statistics can function as prior knowledge to guide the automatic registration process. Compared to an algorithm with no knowledge guidance, registration using the statistical atlas reduces the overall error on 40 test cases by 34%. Automatic registration between the atlas and a subject's data adapts the expert segmentation for the subject, thus reduces the months-long manual segmentation process to minutes. Accurate and efficient segmentation of medical images enable quantitative study of anatomical differences between populations, as well as detection of abnormal variations indicative of pathologies."

Book 3 D Deformable Registration of Medical Images Using a Statistical Atlas

Download or read book 3 D Deformable Registration of Medical Images Using a Statistical Atlas written by Mei Chen and published by . This book was released on 1998 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "Registration between voxel images of human anatomy enables cross-patient diagnosis and post-treatment analysis. However, innate variations in the shape, size, and density of non-pathological anatomical structures between individuals make accurate registration difficult. Characterization of such normal but inherent variations provides guidance for registration. We extracted the pattern of normal variations in the appearances of brain structures from the T1-weighted magnetic resonance imaging (MRI) volumes of 105 subjects. This knowledge serves as a domain-relevant constraint which increases the accuracy of deformable registration. We represent domain knowledge in the form of voxel statistics, and embed these statistics into a 3-D digital brain atlas which we use as the reference. The knowledge acquisition process involves registering a training set of MRI volumes with the atlas. The method employed is a previously developed 3-D hierarchical deformable registration algorithm. This associates each voxel in the reference atlas with distributions of normal variations of intensity and 3-D positions of the training set. We evaluate statistical properties of these distributions for each atlas voxel to build a statistical atlas which contains the anatomical information of the population. When we register this atlas to a particular subject, the embodied statistics function as domain-relevant constraints. The deformation process tolerates non-pathological variations between subjects. When applied to 40 test cases, this knowledge-constrained registration method achieved a correct voxel classification rate above 95% for 36 cases; this is a 24% improvement over the performance of the algorithm without knowledge constraints. To overcome imprecisions in unconstrained registration that effect the rigorousness of the statistical atlas, we propose to build an initial statistical model of a small but accurately registered training set, then boot-strap it into a more reliable model. Besides guiding deformable registration, our knowledge representation also enables quantitative investigation of possible anatomical divergences between populations."

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 906 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Medical Image Registration

Download or read book Medical Image Registration written by Joseph V. Hajnal and published by CRC Press. This book was released on 2001-06-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image registration is the process of systematically placing separate images in a common frame of reference so that the information they contain can be optimally integrated or compared. This is becoming the central tool for image analysis, understanding, and visualization in both medical and scientific applications. Medical Image Registration provid

Book Adaptive Radiation Therapy

Download or read book Adaptive Radiation Therapy written by X. Allen Li and published by CRC Press. This book was released on 2011-01-27 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an

Book Machine Learning in Radiation Oncology

Download or read book Machine Learning in Radiation Oncology written by Issam El Naqa and published by Springer. This book was released on 2015-06-19 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Book Index Medicus

Download or read book Index Medicus written by and published by . This book was released on 2004 with total page 2160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.

Book Image Processing with MATLAB

Download or read book Image Processing with MATLAB written by Omer Demirkaya and published by CRC Press. This book was released on 2008-12-22 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image Processing with MATLAB: Applications in Medicine and Biology explains complex, theory-laden topics in image processing through examples and MATLAB algorithms. It describes classical as well emerging areas in image processing and analysis. Providing many unique MATLAB codes and functions throughout, the book covers the theory of probability an

Book Surface Guided Radiation Therapy

Download or read book Surface Guided Radiation Therapy written by Jeremy David Page Hoisak and published by CRC Press. This book was released on 2020-02-13 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface Guided Radiation Therapy provides a comprehensive overview of optical surface image guidance systems for radiation therapy. It serves as an introductory teaching resource for students and trainees, and a valuable reference for medical physicists, physicians, radiation therapists, and administrators who wish to incorporate surface guided radiation therapy (SGRT) into their clinical practice. This is the first book dedicated to the principles and practice of SGRT, featuring: Chapters authored by an internationally represented list of physicists, radiation oncologists and therapists, edited by pioneers and experts in SGRT Covering the evolution of localization systems and their role in quality and safety, current SGRT systems, practical guides to commissioning and quality assurance, clinical applications by anatomic site, and emerging topics including skin mark-less setups. Several dedicated chapters on SGRT for intracranial radiosurgery and breast, covering technical aspects, risk assessment and outcomes. Jeremy Hoisak, PhD, DABR is an Assistant Professor in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Hoisak’s clinical expertise includes radiosurgery and respiratory motion management. Adam Paxton, PhD, DABR is an Assistant Professor in the Department of Radiation Oncology at the University of Utah. Dr. Paxton’s clinical expertise includes patient safety, motion management, radiosurgery, and proton therapy. Benjamin Waghorn, PhD, DABR is the Director of Clinical Physics at Vision RT. Dr. Waghorn’s research interests include intensity modulated radiation therapy, motion management, and surface image guidance systems. Todd Pawlicki, PhD, DABR, FAAPM, FASTRO, is Professor and Vice-Chair for Medical Physics in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Pawlicki has published extensively on quality and safety in radiation therapy. He has served on the Board of Directors for the American Society for Radiology Oncology (ASTRO) and the American Association of Physicists in Medicine (AAPM).

Book Automated Assessment of Blood Flow in the Cardiovascular System Using 4D Flow MRI

Download or read book Automated Assessment of Blood Flow in the Cardiovascular System Using 4D Flow MRI written by Mariana Bustamante and published by Linköping University Electronic Press. This book was released on 2018-03-23 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical image analysis focuses on the extraction of meaningful information from medical images in order to facilitate clinical assessment, diagnostics and treatment. Image processing techniques have gradually become an essential part of the modern health care system, a consequence of the continuous technological improvements and the availability of a variety of medical imaging techniques. Magnetic Resonance Imaging (MRI) is an imaging technique that stands out as non-invasive, highly versatile, and capable of generating high quality images without the use of ionizing radiation. MRI is frequently performed in the clinical setting to assess the morphology and function of the heart and vessels. When focusing on the cardiovascular system, blood flow visualization and quantification is essential in order to fully understand and identify related pathologies. Among the variety of MR techniques available for cardiac imaging, 4D Flow MRI allows for full three-dimensional spatial coverage over time, also including three-directional velocity information. It is a very powerful technique that can be used for retrospective analysis of blood flow dynamics at any location in the acquired volume. In the clinical routine, however, flow analysis is typically done using two-dimensional imaging methods. This can be explained by their shorter acquisition times, higher in-plane spatial resolution and signal-to-noise ratio, and their relatively simpler post-processing requirements when compared to 4D Flow MRI. The extraction of useful knowledge from 4D Flow MR data is especially challenging due to the large amount of information included in these images, and typically requires substantial user interaction. This thesis aims to develop and evaluate techniques that facilitate the post-processing of thoracic 4D Flow MRI by automating the steps necessary to obtain hemodynamic parameters of interest from the data. The proposed methods require little to no user interaction, are fairly quick, make effective use of the information available in the four-dimensional images, and can easily be applied to sizable groups of data.The addition of the proposed techniques to the current pipeline of 4D Flow MRI analysis simplifies and expedites the assessment of these images, thus bringing them closer to the clinical routine. Medicinsk bildanalys fokuserar på extrahering av meningsfull information från medicinska bilder för att underlätta klinisk bedömning, diagnostik, och behandling. Bildbehandlingsteknik har gradvis blivit en viktig del av det moderna sjukvårdsystemet, en följd av de kontinuerliga tekniska förbättringarna och tillgången till en mängd olika medicinska bildtekniker. Magnetic resonanstomografi (MRT) är en bildteknik som är ickeinvasiv, flexibel och kan generera bilder av hög kvalitet utan joniserande strålning. MRT utförs ofta i klinisk miljö för att bedöma anatomi och funktion av hjärtat och blodkärlen. När man fokuserar på hjärt-kärlsystemet är bedömning av blodflödet viktigt för att kunna förstå och identifiera sjukdomar fullt ut. Bland de olika MRT-teknikerna som är tillgängliga för avbildning av hjärtat möjliggör 4D flödes-MRT komplett täckning av hjärtat i tre dimensioner över tid, och med hastighetsinformation i tre riktningar. 4D flödes-MRT är en mycket effektiv metod som kan användas för retrospektiv analys av blodflödesdynamik på vilken position som helst i den avbildade volymen. Till vardags görs dock blodflödesanalysen vanligtvis på bilder tagna med tvådimensionella avbildningsmetoder. Detta kan förklaras av deras kortare insamlingstider, högre spatiella upplösning, bättre signal-brusförhållandet, och att de är relativt enklare att efterbehandla jämfört med 4D flödes-MRT. Utvinningen av användbar information från 4D flödes-MRT-data är väldigt utmanande på grund av den stora mängden information som dessa bilder innehåller och kräver vanligtvis väsentlig användarinteraktion. Denna avhandling syftar till att utveckla och utvärdera metoder som underlättar efterbehandlingen av 4D flödes-MRT genom att automatisera de steg som är nödvändiga för att härleda hemodynamiska parametrarna av intresse från dessa data. De föreslagna metoderna kräver liten eller ingen användarinteraktion, är relativt snabba, använder all information som finns i de fyrdimensionella bilderna, och kan enkelt appliceras på stora datamängder. Tillägget av de i avhandlingen beskrivna metoderna till den nuvarande analysen av 4D flödes-MRT medger en avsevärd förenkling och uppsnabbad utvärdering, vilket gör att den avancerade 4D flödes MRT-tekniken kommer närmare att kunna användas i kliniskt rutinarbete.

Book Photon  Electron  Proton  and Neutron Interaction Data for Body Tissues

Download or read book Photon Electron Proton and Neutron Interaction Data for Body Tissues written by and published by International Commission on Radiation. This book was released on 1992-01-01 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Artificial Intelligence in Medical Imaging

Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Book The Use of Computers in Radiation Therapy

Download or read book The Use of Computers in Radiation Therapy written by Wolfgang Schlegel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computers have had and will continue to have a tremendous impact on professional activity in almost all areas. This applies to radiological medicine and in particular to radiation therapy. This book compiles the most recent developments and results of the application of computers and computer science as presented at the XIIIth International Conference on the Use of Computers in Radiation Therapy in Heidelberg, Germany. The text of both oral presentations and posters is included. The book is intended for computer sientists, medical physicists, engineers and physicians in the field of radiation therapy and provides a comprehensive survey of the entire field.

Book Medical Image Computing and Computer Assisted Intervention    MICCAI 2012

Download or read book Medical Image Computing and Computer Assisted Intervention MICCAI 2012 written by Nicholas Ayache and published by Springer. This book was released on 2012-08-28 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 7510, 7511, and 7512 constitutes the refereed proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012, held in Nice, France, in October 2012. Based on rigorous peer reviews, the program committee carefully selected 252 revised papers from 781 submissions for presentation in three volumes. The third volume includes 79 papers organized in topical sections on diffusion imaging: from acquisition to tractography; image acquisition, segmentation and recognition; image registration; neuroimage analysis; analysis of microscopic and optical images; image segmentation; diffusion weighted imaging; computer-aided diagnosis and planning; and microscopic image analysis.

Book Intraoperative Imaging

    Book Details:
  • Author : M. Necmettin Pamir
  • Publisher : Springer Science & Business Media
  • Release : 2010-10-20
  • ISBN : 3211996516
  • Pages : 253 pages

Download or read book Intraoperative Imaging written by M. Necmettin Pamir and published by Springer Science & Business Media. This book was released on 2010-10-20 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intraoperative imaging technologies have taken an ever-increasing role in the daily practice of neurosurgeons and the increasing attention and interest necessitated international interaction and collaboration. The Intraoperative Imaging Society was formed in 2007. This book brings together highlights from the second meeting of the Intraoperative Imaging Society, which took place in Istanbul-Turkey from June 14 to 17, 2009. Included within the contents of the book is an overview of the emergence and development of the intraoperative imaging technology as well as a glimpse on where the technology is heading. This is followed by in detail coverage of intraoperative MRI technology and sections on intraoperative CT and ultrasonography. There are also sections on multimodality integration, intraoperative robotics and other intraoperative technologies. We believe that this book will provide an up-to date and comprehensive general overview of the current intraoperative imaging technology as well as detailed discussions on individual techniques and clinical results.

Book Image Processing in Radiation Therapy

Download or read book Image Processing in Radiation Therapy written by Kristy K. Brock and published by CRC Press. This book was released on 2016-04-19 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Images from CT, MRI, PET, and other medical instrumentation have become central to the radiotherapy process in the past two decades, thus requiring medical physicists, clinicians, dosimetrists, radiation therapists, and trainees to integrate and segment these images efficiently and accurately in a clinical environment. Image Processing in Radiation