Download or read book Highly Parallel Computing written by George S. Almasi and published by Addison Wesley Longman. This book was released on 1994 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition includes new exercises for each chapter, a quantitative treatment of speedup, seismic migration, using a workstation network as a parallel computer, recent changes in technology, more languages, fat trees, wormhole switching, new SIMD hardware, an expanded section on CM-2, new MIMD hardware, using workstation clusters as a MIMD system, and directory based caches. Annotation copyright by Book News, Inc., Portland, OR
Download or read book Programming Massively Parallel Processors written by David B. Kirk and published by Newnes. This book was released on 2012-12-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
Download or read book Advances in Edge Computing Massive Parallel Processing and Applications written by F. Xhafa and published by IOS Press. This book was released on 2020-03-10 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid advance of Internet of Things (IoT) technologies has resulted in the number of IoT-connected devices growing exponentially, with billions of connected devices worldwide. While this development brings with it great opportunities for many fields of science, engineering, business and everyday life, it also presents challenges such as an architectural bottleneck – with a very large number of IoT devices connected to a rather small number of servers in Cloud data centers – and the problem of data deluge. Edge computing aims to alleviate the computational burden of the IoT for the Cloud by pushing some of the computations and logics of processing from the Cloud to the Edge of the Internet. It is becoming commonplace to allocate tasks and applications such as data filtering, classification, semantic enrichment and data aggregation to this layer, but to prevent this new layer from itself becoming another bottleneck for the whole computing stack from IoT to the Cloud, the Edge computing layer needs to be capable of implementing massively parallel and distributed algorithms efficiently. This book, Advances in Edge Computing: Massive Parallel Processing and Applications, addresses these challenges in 11 chapters. Subjects covered include: Fog storage software architecture; IoT-based crowdsourcing; the industrial Internet of Things; privacy issues; smart home management in the Cloud and the Fog; and a cloud robotic solution to assist medical applications. Providing an overview of developments in the field, the book will be of interest to all those working with the Internet of Things and Edge computing.
Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Download or read book Parallel Computing Works written by Geoffrey C. Fox and published by Elsevier. This book was released on 2014-06-28 with total page 1012 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop algorithms for frequently used mathematicalcomputations. They also devise performance models, measure the performancecharacteristics of several computers, and create a high-performancecomputing facility based exclusively on parallel computers. By addressingall issues involved in scientific problem solving, Parallel ComputingWorks! provides valuable insight into computational science for large-scaleparallel architectures. For those in the sciences, the findings reveal theusefulness of an important experimental tool. Anyone in supercomputing andrelated computational fields will gain a new perspective on the potentialcontributions of parallelism. Includes over 30 full-color illustrations.
Download or read book High Performance Compilers for Parallel Computing written by Michael Joseph Wolfe and published by Addison Wesley. This book was released on 1996 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software -- Operating Systems.
Download or read book Using OpenCL written by Janusz Kowalik and published by IOS Press. This book was released on 2012 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Parallel Computing Technology Trends written by I. Foster and published by IOS Press. This book was released on 2020-03-25 with total page 806 pages. Available in PDF, EPUB and Kindle. Book excerpt: The year 2019 marked four decades of cluster computing, a history that began in 1979 when the first cluster systems using Components Off The Shelf (COTS) became operational. This achievement resulted in a rapidly growing interest in affordable parallel computing for solving compute intensive and large scale problems. It also directly lead to the founding of the Parco conference series. Starting in 1983, the International Conference on Parallel Computing, ParCo, has long been a leading venue for discussions of important developments, applications, and future trends in cluster computing, parallel computing, and high-performance computing. ParCo2019, held in Prague, Czech Republic, from 10 – 13 September 2019, was no exception. Its papers, invited talks, and specialized mini-symposia addressed cutting-edge topics in computer architectures, programming methods for specialized devices such as field programmable gate arrays (FPGAs) and graphical processing units (GPUs), innovative applications of parallel computers, approaches to reproducibility in parallel computations, and other relevant areas. This book presents the proceedings of ParCo2019, with the goal of making the many fascinating topics discussed at the meeting accessible to a broader audience. The proceedings contains 57 contributions in total, all of which have been peer-reviewed after their presentation. These papers give a wide ranging overview of the current status of research, developments, and applications in parallel computing.
Download or read book Parallel Processing from Applications to Systems written by Dan I. Moldovan and published by Elsevier. This book was released on 2014-06-28 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides one of the broadest presentations of parallel processing available, including the structure of parallelprocessors and parallel algorithms. The emphasis is on mapping algorithms to highly parallel computers, with extensive coverage of array and multiprocessor architectures. Early chapters provide insightful coverage on the analysis of parallel algorithms and program transformations, effectively integrating a variety of material previously scattered throughout the literature. Theory and practice are well balanced across diverse topics in this concise presentation. For exceptional clarity and comprehension, the author presents complex material in geometric graphs as well as algebraic notation. Each chapter includes well-chosen examples, tables summarizing related key concepts and definitions, and a broad range of worked exercises. - Overview of common hardware and theoretical models, including algorithm characteristics and impediments to fast performance - Analysis of data dependencies and inherent parallelism through program examples, building from simple to complex - Graphic and explanatory coverage of program transformations - Easy-to-follow presentation of parallel processor structures and interconnection networks, including parallelizing and restructuring compilers - Parallel synchronization methods and types of parallel operating systems - Detailed descriptions of hypercube systems - Specialized chapters on dataflow and on AI architectures
Download or read book Parallel Computing Fundamentals Applications and New Directions written by E.H. D'Hollander and published by Elsevier. This book was released on 1998-07-22 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gives an overview of the state-of-the-art with respect to the development of all types of parallel computers and their application to a wide range of problem areas. The international conference on parallel computing ParCo97 (Parallel Computing 97) was held in Bonn, Germany from 19 to 22 September 1997. The first conference in this biannual series was held in 1983 in Berlin. Further conferences were held in Leiden (The Netherlands), London (UK), Grenoble (France) and Gent (Belgium). From the outset the aim with the ParCo (Parallel Computing) conferences was to promote the application of parallel computers to solve real life problems. In the case of ParCo97 a new milestone was reached in that more than half of the papers and posters presented were concerned with application aspects. This fact reflects the coming of age of parallel computing. Some 200 papers were submitted to the Program Committee by authors from all over the world. The final programme consisted of four invited papers, 71 contributed scientific/industrial papers and 45 posters. In addition a panel discussion on Parallel Computing and the Evolution of Cyberspace was held. During and after the conference all final contributions were refereed. Only those papers and posters accepted during this final screening process are included in this volume. The practical emphasis of the conference was accentuated by an industrial exhibition where companies demonstrated the newest developments in parallel processing equipment and software. Speakers from participating companies presented papers in industrial sessions in which new developments in parallel computing were reported.
Download or read book Introduction to Parallel Computing written by Ananth Grama and published by Pearson Education. This book was released on 2003 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.
Download or read book Handbook of Parallel Computing and Statistics written by Erricos John Kontoghiorghes and published by CRC Press. This book was released on 2005-12-21 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts
Download or read book High Performance Parallel Computing written by Satyadhyan Chickerur and published by BoD – Books on Demand. This book was released on 2019-03-13 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book aims to present the state of the art in research and development of the convergence of high-performance computing and parallel programming for various engineering and scientific applications. The book has consolidated algorithms, techniques, and methodologies to bridge the gap between the theoretical foundations of academia and implementation for research, which might be used in business and other real-time applications in the future.The book outlines techniques and tools used for emergent areas and domains, which include acceleration of large-scale electronic structure simulations with heterogeneous parallel computing, characterizing power and energy efficiency of a data-centric high-performance computing runtime and applications, security applications of GPUs, parallel implementation of multiprocessors on MPI using FDTD, particle-based fused rendering, design and implementation of particle systems for mesh-free methods with high performance, and evolving topics on heterogeneous computing. In the coming days the need to converge HPC, IoT, cloud-based applications will be felt and this volume tries to bridge that gap.
Download or read book Patterns for Parallel Programming written by Timothy G. Mattson and published by Pearson Education. This book was released on 2004-09-15 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.
Download or read book Encyclopedia of Parallel Computing written by David Padua and published by Springer Science & Business Media. This book was released on 2011-09-08 with total page 2211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing over 300 entries in an A-Z format, the Encyclopedia of Parallel Computing provides easy, intuitive access to relevant information for professionals and researchers seeking access to any aspect within the broad field of parallel computing. Topics for this comprehensive reference were selected, written, and peer-reviewed by an international pool of distinguished researchers in the field. The Encyclopedia is broad in scope, covering machine organization, programming languages, algorithms, and applications. Within each area, concepts, designs, and specific implementations are presented. The highly-structured essays in this work comprise synonyms, a definition and discussion of the topic, bibliographies, and links to related literature. Extensive cross-references to other entries within the Encyclopedia support efficient, user-friendly searchers for immediate access to useful information. Key concepts presented in the Encyclopedia of Parallel Computing include; laws and metrics; specific numerical and non-numerical algorithms; asynchronous algorithms; libraries of subroutines; benchmark suites; applications; sequential consistency and cache coherency; machine classes such as clusters, shared-memory multiprocessors, special-purpose machines and dataflow machines; specific machines such as Cray supercomputers, IBM’s cell processor and Intel’s multicore machines; race detection and auto parallelization; parallel programming languages, synchronization primitives, collective operations, message passing libraries, checkpointing, and operating systems. Topics covered: Speedup, Efficiency, Isoefficiency, Redundancy, Amdahls law, Computer Architecture Concepts, Parallel Machine Designs, Benmarks, Parallel Programming concepts & design, Algorithms, Parallel applications. This authoritative reference will be published in two formats: print and online. The online edition features hyperlinks to cross-references and to additional significant research. Related Subjects: supercomputing, high-performance computing, distributed computing
Download or read book Parallel Computing written by G. Jack Lipovski and published by Wiley-Interscience. This book was released on 1987-05-14 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.
Download or read book Parallel Processing for Scientific Computing written by Michael A. Heroux and published by SIAM. This book was released on 2006-01-01 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.