EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Resolution X ray Imaging and Quantitative Microanalysis in Electron Microscopy

Download or read book High Resolution X ray Imaging and Quantitative Microanalysis in Electron Microscopy written by Chaoyi Teng and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) systems are popular for X-ray microanalysis due to its simple and fast operation. Recent years, which use cold field emission sources and silicon drift detectors, are highly capable X-ray imaging and quantitative microanalysis tools. However, the analytical efficiency and accuracy of SEM/EDS still have room for improvement. Regarding X-ray elemental mapping in particular, the top concern is to collect sufficient X-ray counts. Unfortunately, high count rates are usually achieved with sacrificing acquisition efficiency or spatial resolution. Regarding the quantitative X-ray microanalysis, the accuracy of EDS is constantly being questioned. Thus, the objective of this study is to optimize the SEM/EDS, making it a more efficient and accurate analytical instrument. In this study, X-ray mapping was performed on rare earth minerals (REMs), which contain various phases and complicated elemental constituents. The data was collected using a cold field emission SEM (CFE-SEM) equipped with an annular SDD (aSDD). The traditional elemental maps usually have excessive noise and limited phase information, so phase map analysis was performed instead. Compared with the conventional SDD, the aSDD has a larger solid angle, which produces high count rate and allows for efficient analysis at a low beam energy. The enhanced spatial resolution enables the accurate identification of REM phases down to one micron. In addition, the multivariate statistical analysis (MSA), i.e. the principal components analysis (PCA) and the blind source separation (BSS), was performed on the phase maps of REMs. This analysis reduces the noise and improves the phase identification accuracy, shortening the necessary acquisition timeThe f-ratio method, which is a recently developed quantitative analysis method for binary systems based on a CFE-SEM/EDS, is used. This method incorporates traditional EDS experiments and Monte Carlo simulations. Standards with known compositions are needed to calibrate the differences between experiments and simulations. In this study, the f-ratio method was applied to multi-element systems, including two Mg-Al-Zn alloys, and three standard minerals [kyanite (Al2SiO5), albite (NaAlSi3O8) and orthoclase (KAlSi3O8)]. The requirement of standard option was extended to any standard containing one or more target elements. The influences of the beam current, beam energy, and the standard composition were investigated. It is shown that the beam current does not have obvious impacts on the quantification results, so the f-ratio method is suitable for long acquisition, even when suffering from current instabilities. In addition, using beam-energy-dependent calibration factors, the f-ratio method can achieve a satisfactory accuracy"--

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph Goldstein and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph I. Goldstein and published by Springer. This book was released on 2017-11-17 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thoroughly revised and updated Fourth Edition of a time-honored text provides the reader with a comprehensive introduction to the field of scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) for elemental microanalysis, electron backscatter diffraction analysis (EBSD) for micro-crystallography, and focused ion beams. Students and academic researchers will find the text to be an authoritative and scholarly resource, while SEM operators and a diversity of practitioners — engineers, technicians, physical and biological scientists, clinicians, and technical managers — will find that every chapter has been overhauled to meet the more practical needs of the technologist and working professional. In a break with the past, this Fourth Edition de-emphasizes the design and physical operating basis of the instrumentation, including the electron sources, lenses, detectors, etc. In the modern SEM, many of the low level instrument parameters are now controlled and optimized by the microscope’s software, and user access is restricted. Although the software control system provides efficient and reproducible microscopy and microanalysis, the user must understand the parameter space wherein choices are made to achieve effective and meaningful microscopy, microanalysis, and micro-crystallography. Therefore, special emphasis is placed on beam energy, beam current, electron detector characteristics and controls, and ancillary techniques such as energy dispersive x-ray spectrometry (EDS) and electron backscatter diffraction (EBSD). With 13 years between the publication of the third and fourth editions, new coverage reflects the many improvements in the instrument and analysis techniques. The SEM has evolved into a powerful and versatile characterization platform in which morphology, elemental composition, and crystal structure can be evaluated simultaneously. Extension of the SEM into a "dual beam" platform incorporating both electron and ion columns allows precision modification of the specimen by focused ion beam milling. New coverage in the Fourth Edition includes the increasing use of field emission guns and SEM instruments with high resolution capabilities, variable pressure SEM operation, theory, and measurement of x-rays with high throughput silicon drift detector (SDD-EDS) x-ray spectrometers. In addition to powerful vendor- supplied software to support data collection and processing, the microscopist can access advanced capabilities available in free, open source software platforms, including the National Institutes of Health (NIH) ImageJ-Fiji for image processing and the National Institute of Standards and Technology (NIST) DTSA II for quantitative EDS x-ray microanalysis and spectral simulation, both of which are extensively used in this work. However, the user has a responsibility to bring intellect, curiosity, and a proper skepticism to information on a computer screen and to the entire measurement process. This book helps you to achieve this goal. Realigns the text with the needs of a diverse audience from researchers and graduate students to SEM operators and technical managers Emphasizes practical, hands-on operation of the microscope, particularly user selection of the critical operating parameters to achieve meaningful results Provides step-by-step overviews of SEM, EDS, and EBSD and checklists of critical issues for SEM imaging, EDS x-ray microanalysis, and EBSD crystallographic measurements Makes extensive use of open source software: NIH ImageJ-FIJI for image processing and NIST DTSA II for quantitative EDS x-ray microanalysis and EDS spectral simulation. Includes case studies to illustrate practical problem solving Covers Helium ion scanning microscopy Organized into relatively self-contained modules – no need to "read it all" to understand a topic Includes an online supplement—an extensive "Database of Electron–Solid Interactions"—which can be accessed on SpringerLink, in Chapter 3

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph Goldstein and published by Springer. This book was released on 2011-09-28 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade, since the publication of the first edition of Scanning Electron Microscopy and X-ray Microanalysis, there has been a great expansion in the capabilities of the basic SEM and EPMA. High resolution imaging has been developed with the aid of an extensive range of field emission gun (FEG) microscopes. The magnification ranges of these instruments now overlap those of the transmission electron microscope. Low-voltage microscopy using the FEG now allows for the observation of noncoated samples. In addition, advances in the develop ment of x-ray wavelength and energy dispersive spectrometers allow for the measurement of low-energy x-rays, particularly from the light elements (B, C, N, 0). In the area of x-ray microanalysis, great advances have been made, particularly with the "phi rho z" [Ij)(pz)] technique for solid samples, and with other quantitation methods for thin films, particles, rough surfaces, and the light elements. In addition, x-ray imaging has advanced from the conventional technique of "dot mapping" to the method of quantitative compositional imaging. Beyond this, new software has allowed the development of much more meaningful displays for both imaging and quantitative analysis results and the capability for integrating the data to obtain specific information such as precipitate size, chemical analysis in designated areas or along specific directions, and local chemical inhomogeneities.

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph Goldstein and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides students as well as practitioners with a comprehensive introduction to the field of scanning electron microscopy (SEM) and X-ray microanalysis. The authors emphasize the practical aspects of the techniques described. Topics discussed include user-controlled functions of scanning electron microscopes and x-ray spectrometers and the use of x-rays for qualitative and quantitative analysis. Separate chapters cover SEM sample preparation methods for hard materials, polymers, and biological specimens. In addition techniques for the elimination of charging in non-conducting specimens are detailed.

Book Advanced Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Advanced Scanning Electron Microscopy and X Ray Microanalysis written by Patrick Echlin and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has its origins in the intensive short courses on scanning elec tron microscopy and x-ray microanalysis which have been taught annually at Lehigh University since 1972. In order to provide a textbook containing the materials presented in the original course, the lecturers collaborated to write the book Practical Scanning Electron Microscopy (PSEM), which was published by Plenum Press in 1975. The course con tinued to evolve and expand in the ensuing years, until the volume of material to be covered necessitated the development of separate intro ductory and advanced courses. In 1981 the lecturers undertook the project of rewriting the original textbook, producing the volume Scan ning Electron Microscopy and X-Ray Microanalysis (SEMXM). This vol ume contained substantial expansions of the treatment of such basic material as electron optics, image formation, energy-dispersive x-ray spectrometry, and qualitative and quantitative analysis. At the same time, a number of chapters, which had been included in the PSEM vol ume, including those on magnetic contrast and electron channeling con trast, had to be dropped for reasons of space. Moreover, these topics had naturally evolved into the basis of the advanced course. In addition, the evolution of the SEM and microanalysis fields had resulted in the devel opment of new topics, such as digital image processing, which by their nature became topics in the advanced course.

Book Principles of Analytical Electron Microscopy

Download or read book Principles of Analytical Electron Microscopy written by Joseph Goldstein and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication in 1979 of Introduction to Analytical Electron Microscopy (ed. J. J. Hren, J. I. Goldstein, and D. C. Joy; Plenum Press), analytical electron microscopy has continued to evolve and mature both as a topic for fundamental scientific investigation and as a tool for inorganic and organic materials characterization. Significant strides have been made in our understanding of image formation, electron diffraction, and beam/specimen interactions, both in terms of the "physics of the processes" and their practical implementation in modern instruments. It is the intent of the editors and authors of the current text, Principles of Analytical Electron Microscopy, to bring together, in one concise and readily accessible volume, these recent advances in the subject. The text begins with a thorough discussion of fundamentals to lay a foundation for today's state-of-the-art microscopy. All currently important areas in analytical electron microscopy-including electron optics, electron beam/specimen interactions, image formation, x-ray microanalysis, energy-loss spectroscopy, electron diffraction and specimen effects-have been given thorough attention. To increase the utility of the volume to a broader cross section of the scientific community, the book's approach is, in general, more descriptive than mathematical. In some areas, however, mathematical concepts are dealt with in depth, increasing the appeal to those seeking a more rigorous treatment of the subject.

Book X ray Microanalysis for Biologists

Download or read book X ray Microanalysis for Biologists written by Alice Warley and published by Ashgate Publishing. This book was released on 1997 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The smart way to learn how to build InfoPath forms for SharePoint - one step at a time. Design and build forms without writing code, add approval workflows to your forms, integrate data, create and use forms in the cloud.

Book Energy Dispersive X ray Analysis in the Electron Microscope

Download or read book Energy Dispersive X ray Analysis in the Electron Microscope written by DC Bell and published by Garland Science. This book was released on 2003-07-10 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical method is more suitable for their planned application.

Book Field Emission Scanning Electron Microscopy

Download or read book Field Emission Scanning Electron Microscopy written by Nicolas Brodusch and published by Springer. This book was released on 2017-09-25 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights what is now achievable in terms of materials characterization with the new generation of cold-field emission scanning electron microscopes applied to real materials at high spatial resolution. It discusses advanced scanning electron microscopes/scanning- transmission electron microscopes (SEM/STEM), simulation and post-processing techniques at high spatial resolution in the fields of nanomaterials, metallurgy, geology, and more. These microscopes now offer improved performance at very low landing voltage and high -beam probe current stability, combined with a routine transmission mode capability that can compete with the (scanning-) transmission electron microscopes (STEM/-TEM) historically run at higher beam accelerating voltage

Book X Ray Optics and X Ray Microanalysis

Download or read book X Ray Optics and X Ray Microanalysis written by H. H. Pattee and published by Elsevier. This book was released on 2013-10-22 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray Optics and X-ray Microanalysis covers the proceedings of the Symposium on X-ray Optics and X-ray Microanalysis, held at Stanford University on August 22-24, 1962. The book focuses on X-ray microscopy, microradiography, radiation and irradiation, and X-ray microanalysis. The selection first offers information on the methods of X-ray microscopy and X-ray absorption microanalysis. Discussions focus on X-ray scanning microscopy, contact microradiography, point projection microscopy, and total dry-weight determinations. The text then takes a look at X-ray microanalysis in biology and medicine; electron microscopic enlargements of X-ray absorption micrographs; and automation in microradiography. The publication examines the production of Fresnel zone plates for extreme ultraviolet and soft X radiation; quantitative microradiographic studies of human epidermis; and irradiation effect on total organic nerve-cell material determined by integrating X-ray absorption. The manuscript then reviews the calculation of fluorescence excited by characteristic radiation in the X-ray microanalyzer and the method for calculating the absorption correction in electron-probe microanalysis. The selection is a valuable reference for readers interested in X-ray technology.

Book Scanning Electron Microscopy  X Ray Microanalysis  and Analytical Electron Microscopy

Download or read book Scanning Electron Microscopy X Ray Microanalysis and Analytical Electron Microscopy written by Charles E. Lyman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last four decades remarkable developments have taken place in instrumentation and techniques for characterizing the microstructure and microcomposition of materials. Some of the most important of these instruments involve the use of electron beams because of the wealth of information that can be obtained from the interaction of electron beams with matter. The principal instruments include the scanning electron microscope, electron probe x-ray microanalyzer, and the analytical transmission electron microscope. The training of students to use these instruments and to apply the new techniques that are possible with them is an important function, which. has been carried out by formal classes in universities and colleges and by special summer courses such as the ones offered for the past 19 years at Lehigh University. Laboratory work, which should be an integral part of such courses, is often hindered by the lack of a suitable laboratory workbook. While laboratory workbooks for transmission electron microscopy have-been in existence for many years, the broad range of topics that must be dealt with in scanning electron microscopy and microanalysis has made it difficult for instructors to devise meaningful experiments. The present workbook provides a series of fundamental experiments to aid in "hands-on" learning of the use of the instrumentation and the techniques. It is written by a group of eminently qualified scientists and educators. The importance of hands-on learning cannot be overemphasized.

Book Electron Microprobe Analysis and Scanning Electron Microscopy in Geology

Download or read book Electron Microprobe Analysis and Scanning Electron Microscopy in Geology written by S. J. B. Reed and published by Cambridge University Press. This book was released on 2005-08-25 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.

Book MICRON HIGH RESOLUTION MICROSCOPY AND X RAY MICROANALYSIS IN BIOLOGY

Download or read book MICRON HIGH RESOLUTION MICROSCOPY AND X RAY MICROANALYSIS IN BIOLOGY written by and published by . This book was released on 1972 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Eighth International Congress on X ray Optics and Microanalysis

Download or read book Eighth International Congress on X ray Optics and Microanalysis written by Donald Robert Beaman and published by . This book was released on 1980 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantitative Microanalysis with High Spatial Resolution

Download or read book Quantitative Microanalysis with High Spatial Resolution written by G. W. Lorimer and published by Ashgate Publishing. This book was released on 1981 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph Goldstein and published by Springer. This book was released on 2013-03-20 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.