EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Repetition Rate Fiber and Integrated Waveguide Femtosecond Lasers

Download or read book High Repetition Rate Fiber and Integrated Waveguide Femtosecond Lasers written by Michelle Yen-Ling Sander and published by . This book was released on 2012 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond lasers and the development of frequency combs have revolutionized multiple fields like metrology, spectroscopy, medical diagnostics and optical communications. However, to enable wider adoption of the technology and new applications like photonic sampling, optical arbitrary waveform generation or the calibration of astronomical spectrographs, multi-GHz repetition rate femtosecond lasers with robust performance metrics, low cost, and a compact footprint are highly desirable. In this thesis, different approaches to develop GHz mode-locked laser systems at telecommunication wavelengths are discussed and current achievements presented. Design aspects for constructing a long-term stable and compact fiber laser with 187 fs short pulses at a repetition rate of 1 GHz are covered. In order to scale the repetition rate into the multi- GHz regime, coherent pulse interleaving in novel thermally tunable waveguide interleavers is demonstrated at 10 GHz. A femtosecond erbium-doped waveguide laser is developed at GHz repetition rates and important design guidelines are provided. As saturable Bragg reflectors are crucial in all of the described systems to enable mode-locking, saturable absorber optimization is discussed and their optical performance compared. Thus, this research paves the way for compact, affordable high repetition rate fiber lasers and monolithically integrated femtosecond laser sources which can be combined on-chip with additional functionalities to develop novel photonic systems with impact on spectroscopy, sensing, telecommunications and biomedical applications.

Book High Repetition Rate Mode locked Erbium doped Fiber Lasers with Complete Electric Field Control

Download or read book High Repetition Rate Mode locked Erbium doped Fiber Lasers with Complete Electric Field Control written by Jason William Sickler and published by . This book was released on 2008 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in fully-stabilized mode-locked laser systems are enabling many applications, including optical arbitrary waveform generation (OAWG). In this thesis work, we describe the development of high repetition-rate fiber laser-based systems for the realization of these applications at 1550 nm wavelengths. To realize these systems, frequency comb sources are needed that are compatible with electric field stabilization techniques, are compatible with integrated arrayed waveguide grating and modulator technology, and have high repetition rates to allow full use of current modulator bandwidths. Erbium-doped fiber lasers are one of the leading options to fill this role. To that end, fundamentally mode-locked stretched pulse fiber lasers approaching 250 MHz repetition rate and soliton fiber lasers at over 200 MHz repetition rates are presented, and the limitations of repetition rate scaling in fiber lasers are explored. Using the 200 MHz soliton laser and an external Fabry-Perot cavity, a low-noise, repetition rate multiplied 2 GHz source is demonstrated. Stabilization systems for high repetition rate sources must also be developed. Carrier envelope offset locking experiments using self-referencing techniques at 200 MHz repetition rate are described. Initial demonstrations towards repetition rate locking to a methane-stabilized HeNe single-frequency standard using difference-frequency generation are presented.

Book Birefringence and Bragg grating control in femtosecond laser written optical circuits

Download or read book Birefringence and Bragg grating control in femtosecond laser written optical circuits written by and published by Luis Andre Fernandes. This book was released on 2012-12-31 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, femtosecond lasers are explored for the fabrication of fiber Bragg gratings (FBGs) in suspended core fibers (SCFs) as well as direct writing of integrated optical devices in bulk fused silica glass. The FBGs fabricated in suspended core fibers with different core geometries were demonstrated with femtosecond laser exposure through a Talbot interferometer. In this case, the use of a femtosecond laser system was crucial as it eliminates the need for the use of photosensitive fibers, which is the case for SCFs, while the Talbot interferometry setup provided flexibility in the definition of the grating periodicity, while simultaneously protecting the optical components used in the fabrication process from the high intensities reached during exposure in the proximity of the fibers. These Bragg gratings were employed to show simultaneous strain and temperature sensing. Using a femtosecond laser direct writing system, novel point-by-point fabrication arrangements, with detailed attention to the computer controlled laser beam modulation, were developed in order to correctly introduce modulation of the refractive index profile during the waveguide fabrication process. This technique enabled the development of phase and frequency control required for advanced Bragg grating waveguide (BGW) fabrication and arbitrary spectral shaping. Procedures were demonstrated for the fabrication of chirped and phased shifted BGWs for applications in temporal pulse shaping and spectral shaping that showed significantly improved feature resolutions for sensing applications. The BGWs were used as a practical sensitive tool to determine and study the waveguide birefringence inherent to the nonlinear absorption processes typical of femtosecond laser-material interaction. The control of form and stress birefringence was developed in order to accomplish the fabrication of integrated optical components for polarization control, like guided wave retarders and polarization beam splitters. Tuning of this waveguide birefringence was achieved by the introduction of stress inducing laser modification tracks that enabled the ability to both enhance or reduce the inherent birefringence. Characterization techniques were developed for the absolute determination of the birefringence based on BGWs spectrum splitting, together with crossed polarizer measurements, while novel data analysis procedures were demonstrated for the study of polarization dependent and polarization independent directional couplers with the introduction of a polarization splitting ratio which is wavelength and coupling length dependent. All of the improvements made in the understanding of waveguide birefringence control provided increased flexibility to simultaneously fabricate low polarization mode dispersion circuits, as well as more efficient and compact polarization dependent devices. The polarization aspects detailed here, together with the point-by-point fabrication system, may be further developed in the future towards the fabrication of more complex integrated devices that combine spectral, temporal, and polarization control, all achievable with the same femtosecond laser writing system. These flexible processing techniques will open new directions for writing additional functionalities in optical circuits with more compact three-dimensional geometries.

Book Fiber Lasers

Download or read book Fiber Lasers written by Liang Dong and published by CRC Press. This book was released on 2016-09-19 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fiber laser, with its humble beginning in the late 1980s, has undergone tremendous development in the past decade or so, transforming itself from a research curiosity to a major force in modern manufacturing. Today, it is revolutionizing our economy by fundamentally changing the way we mark, machine, and process materials on an industrial scale. The recent development of high-power fiber lasers is also fundamentally shaping a wide range of other areas from physical sciences and medicine to geology and space exploration. In the past few years, the tactical deployment of direct energy weapons based on fiber lasers has become a reality. The development of fiber lasers is rooted in a number of technical areas including optical materials, optical waveguide design, nonlinear optics, optical fiber fabrication, and optical characterization, in addition to optical fiber components, and fiber laser design and architecture. No comprehensive in-depth coverage of such diverse topical areas has appeared in a single book. Many important developments have taken place in the past decade in both academia and industry. This book comprehensively covers the basics, technology and applications of fiber lasers including up-to-date developments in both academia and industry and is aimed to serve as both an introduction and research aid for graduate students, engineers, and scientists who are new to this field and also for veterans in the field

Book Integrated High repetition rate Femtosecond Lasers at 1 55  mu m

Download or read book Integrated High repetition rate Femtosecond Lasers at 1 55 mu m written by Hyunil Byun and published by . This book was released on 2010 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Performance of state-of-the-art, electronic analog-to-digital converters is currently limited by the 100-fs aperture jitter. However, optical sampling can overcome the jitter limit by using femtosecond lasers that have jitter as low as 100 as, which is a three orders of magnitude improvement when compared to electronics. Currently, most of these lasers exist as bulk or fiber lasers. While such configurations can provide flexibility in order to tailor the behavior of the lasers to specific needs, they are usually as expensive as $10,000 to $100,000 and require precisely adjustable mounts and high-quality optical components. To realize the possibility of femtosecond lasers replacing current electronics for unprecedented performance in the future, these lasers must be as compact, robust, and affordable as electronic circuits. A monolithically integrated mode-locked laser can lower the cost of building such femtosecond lasers and, at the same time, make them less vulnerable to environmental perturbation. This can be achieved by mass-producing them with less expensive materials such as silicon, silicon oxide, or compatible materials. Since all necessary optical components are integrated monolithically on a silicon substrate, bulky and expensive high-precision discrete components can be excluded. The goal of this thesis is the development of femtosecond lasers that can overcome the limit of electronics and potentially replace them. Possible approaches and current achievements are discussed towards this goal.

Book Handbook of Laser Micro  and Nano Engineering

Download or read book Handbook of Laser Micro and Nano Engineering written by KOJI SUGIOKA. and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.

Book Rare Earth Doped Fiber Lasers and Amplifiers  Revised and Expanded

Download or read book Rare Earth Doped Fiber Lasers and Amplifiers Revised and Expanded written by Michel J.F. Digonnet and published by CRC Press. This book was released on 2001-05-31 with total page 956 pages. Available in PDF, EPUB and Kindle. Book excerpt: A discussion of the theories, operating characteristics, and current technology of main fiber laser and amplifier devices based on rare-earth-doped silica and fluorozirconate fibers. It describes the principles, designs, and properties of the erbium-doped fiber amplifier and its role as the cornerstone component in optical communication systems. This second edition contains new and revised material reflecting major developments in academia and industry.

Book Pulsed Fiber Lasers

    Book Details:
  • Author : Peter Adel
  • Publisher : Cuvillier Verlag
  • Release : 2004
  • ISBN : 3865371469
  • Pages : 170 pages

Download or read book Pulsed Fiber Lasers written by Peter Adel and published by Cuvillier Verlag. This book was released on 2004 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Femtosecond Laser Micromachining

Download or read book Femtosecond Laser Micromachining written by Roberto Osellame and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.

Book High Repetition Rate Fiber Lasers

Download or read book High Repetition Rate Fiber Lasers written by Jian Chen (Ph. D.) and published by . This book was released on 2009 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency distribution via fiber links, low noise fiber laser sources operating at multi-gigahertz repetition rates are developed systematically. A 200 MHz fundamentally mode-locked soliton laser and a 200 MHz fundamentally mode-locked similariton laser are first developed. Intra-cavity soliton formation is recognized as the optimum route towards achieving high fundamental repetition rates compact lasers, under the limitation of realistically available pump power. A 3 GHz fundamentally mode-locked femtosecond fiber laser is developed and verifies the soliton formation theory. Techniques in external cavity repetition rate multiplications are also discussed. A theoretical model that relates the repetition rate of the soliton laser and its other physical measurable parameters is developed to guide further high repetition rate laser development.

Book Advanced Materials for Integrated Optical Waveguides

Download or read book Advanced Materials for Integrated Optical Waveguides written by Xingcun Colin Tong Ph.D and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, decreased interconnect delays, resistance to electromagnetic interference, and reduced crosstalk when integrated into standard electronic circuits. Integrated waveguide optics represents a truly multidisciplinary field of science and engineering, with continued growth requiring new developments in modeling, further advances in materials science, and innovations in integration platforms. In addition, the processing and fabrication of these new devices must be optimized in conjunction with the development of accurate and precise characterization and testing methods. Students and professionals in materials science and engineering will find Advanced Materials for Integrated Optical Waveguides to be an invaluable reference for meeting these research and development goals.

Book Femtosecond Fiber Lasers at 1550 Nm for High Repetition Rates and Low Timing Jitter

Download or read book Femtosecond Fiber Lasers at 1550 Nm for High Repetition Rates and Low Timing Jitter written by Jonathan Lee Morse and published by . This book was released on 2013 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond fiber lasers have become an important enabling technology for advances in many areas including: frequency combs, precise timing distribution, optical arbitrary waveform generation, and high bit rate sampling for analog to digital conversion. Experiments and applications like these put demanding requirements on the source laser oscillator; such as operating near 1550 nm in wavelength, multi-gigahertz repetition rates, sub 100 femtosecond pulse widths, and sub 10 femtosecond timing jitters. This thesis describes the design, fabrication, and characterization of three different iterations of mode-locked laser sources utilizing erbium doped fibers and semiconductor saturable absorbing mirrors to form pulse trains in the 1550 nm wavelength band. The first systems took advantage of a highly doped erbium fiber in a sigma cavity configuration to generate 100 fs pulses at up to a 300 MHz repetition rate through polarization additive pulse mode-locking. At the time, this was the highest fundamental repetition rate to be reported for a fiber cavity in a ring configuration. The next two systems are variations on a linear cavity fiber laser design. In the first, the fiber coupling was achieved through free space optics and the saturable absorbing mirror was also imaged through lenses. Once mode-locked, repetition rates of just beyond 1 GHz were demonstrated with this design; however the laser output was relatively low power. The second version coupled the input and output light through fiber components and coupled the fiber directly to the saturable absorbing mirror. This laser mode-locked in several different states and a study to characterize and understand these states was undertaken. Ultimately, it was understood which conditions minimized the cavity noise and pulse widths thus allowing for the achievement of a 1550 nm, 1 GHz, sub 10 fs jitter, femtosecond fiber laser. This laser is more compact than competing technologies and could be constructed with relatively low cost.

Book Fiber Lasers

    Book Details:
  • Author : Oleg G. Okhotnikov
  • Publisher : John Wiley & Sons
  • Release : 2012-06-26
  • ISBN : 3527648666
  • Pages : 295 pages

Download or read book Fiber Lasers written by Oleg G. Okhotnikov and published by John Wiley & Sons. This book was released on 2012-06-26 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of the latest developments and applications in this rapidly developing field, covering a wide range of topics, such as power scaling and short pulse generation, dispersion management and modeling, broadband supercontinuum generation and wavelength tailoring. The book brings together contributions from the world's leading experts at major collaborative research centers throughout Europe, Australia, Russia and the USA. Each chapter presents a tutorial style introduction to the selected topic suitable for scientists, researchers and experts, as well as graduate and postgraduate students with a basic background in optics.

Book Planar Waveguides and other Confined Geometries

Download or read book Planar Waveguides and other Confined Geometries written by Gerd Marowsky and published by Springer. This book was released on 2014-10-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the theoretical concepts and experimental applications of planar waveguides and other confined geometries, such as optical fibres. Covering a broad array of advanced topics, it begins with a sophisticated discussion of planar waveguide theory, and covers subjects including efficient production of planar waveguides, materials selection, nonlinear effects, and applications including species analytics down to single-molecule identification, and thermo-optical switching using planar waveguides. Written by specialists in the techniques and applications covered, this book will be a useful resource for advanced graduate students and researchers studying planar waveguides and optical fibers.

Book Ultrafast  High Repetition Rate  High power Yb doped Fiber Laser Systems

Download or read book Ultrafast High Repetition Rate High power Yb doped Fiber Laser Systems written by Sedigheh Malekmohamadi and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ultrafast Nonlinear Optics

    Book Details:
  • Author : Robert Thomson
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-20
  • ISBN : 3319000179
  • Pages : 385 pages

Download or read book Ultrafast Nonlinear Optics written by Robert Thomson and published by Springer Science & Business Media. This book was released on 2013-03-20 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrashort pulses in metrology and quantum control. Chapters 8 and 9 are concerned with ultrafast nonlinear optics in optical fibres. Chapters 10 to 13 are concerned with the applications of ultrashort pulses in areas such as particle acceleration, microscopy, and micromachining. The chapters are aimed at graduate-student level and are intended to provide the student with an accessible, self-contained and comprehensive gateway into each subject.

Book Femtosecond Technology

    Book Details:
  • Author : T. Kamiya
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642584691
  • Pages : 449 pages

Download or read book Femtosecond Technology written by T. Kamiya and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent rapid advances in femtosecond technology have had a great impact on their industrial applications such as: ultrafast optoelectronic devices and optical telecommunication systems, ultrashort-pulse lasers and measurement systems, and the development of novel materials for ultrafast functions. In this book, a wealth of knowledge covering requirements in applications details of recent achievements in important technical areas is presented by world-prominent authors in a concise, systematic form. As a whole, this is the first comprehensive book on the emerging field of femtosecond technology.