EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Power  High Beam Quality Mid infrared Quantum Cascade Lasers

Download or read book High Power High Beam Quality Mid infrared Quantum Cascade Lasers written by Jae Ha Ryu and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coherent power scaling of quantum cascade lasers (QCLs) for high-power, single-mode continuous-wave (CW) operation has proven to be quite a difficult task - while the device volume could be scaled for higher output power, many other factors such as beam quality and thermal resistance are negatively impacted if the device design is not carefully considered. The main objective of this work has been to develop methods for realizing high continuous-wave (CW) output power QCLs with high beam quality and minimal beam steering. One attractive approach for tackling this problem is the use of resonant leaky-wave-coupled antiguided phase-locked laser arrays. This dissertation focusses on two approaches to achieve high coherent power: 1) one alternate to the resonant leaky-wave-coupled antiguided phase-locked array concept, so called 'reverse-taper'laser; and 2) one combining grating-coupled surface-emitting lasers (GCSELs) with resonant leaky-wave-coupled antiguided phase-locked arrays, where each array element is coupled in both the lateral and longitudinal direction; thus, has a potential for multi-watt -CW surface-emitted output powers with good beam quality and narrow spectral linewidth. The novel geometry reverse-taper QCL device can scale the output power while maintaining good beam quality and beam stability - the tapered region scales the output power, while the emitting facet is located at the narrow-end taper section, which provides mode filtering by suppressing high-order spatial modes. A small degree of collimated-beam centroid movement (

Book High Performance Mid infrared emitting Quantum Cascade Lasers

Download or read book High Performance Mid infrared emitting Quantum Cascade Lasers written by Jeremy Daniel Kirch and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The active region of conventional Quantum Cascade Lasers (QCLs) is composed of quantum wells and barriers of fixed alloy composition. As a consequence, they suffer severe carrier leakage from the upper laser level, as evidenced by low characteristic-temperature values for both the threshold current density and the slope efficiency, over a wide range of heatsink temperatures above room temperature. Here, we describe three methods by which the performance of these devices can be substantially increased. First, to suppress carrier leakage, the energy separation between the upper laser level and the next-higher energy state in the active region, E54 (or E43), needs to be increased; to this end, we propose 4.8μm-emitting, step-tapered active-region (STA) QCLs for nearly complete suppression of carrier leakage. Secondly, we introduce an 8-9μm-emitting STA-QCL design, which also employs a miniband-like carrier extraction scheme to ensures rapid depopulation of the lower laser level. We call the fast, carrier-extraction scheme resonant extraction (RE) since it involves resonant-(tunneling)-extraction not only from lower active-region levels but also from the lower laser level. When both the STA concept and miniband-like carrier extraction scheme are applied, in so-called STA-RE QCLs, it is shown that record-high internal differential efficiency hid values of ~ 86% can be achieved, by comparison to the prior state-of-the-art values of 57 to 67%. Furthermore, the fundamental upper limit for hid is shown be ~ 90%. With this improvement to internal differential efficiency, the wall-plug efficiency, hwp of mid-infrared-emitting QCLs should be ~34% higher than previously predicted, with hwp reaching values in excess of 40% for 4.6μm-emitting QCLs. Preliminary results from 5.0μm-emitting STA-RE QCLs are shown. Lastly, we show how single QCL emitters can be monolithically beam-combined to create High-Index-Contrast Photonic-Crystal (HC-PC) lasers as a means to coherently scale a QCL's output power while maintaining high beam quality, even under continuous-wave (CW) operating conditions. We present one such structure, which provided an output power of 5.5 W in a far-field beam pattern with lobewidths ~1.65 times the diffraction limit, and 82% energy contained in the central lobe. Methods to further improve on this result are also discussed.

Book Mid Infrared and Terahertz Quantum Cascade Lasers

Download or read book Mid Infrared and Terahertz Quantum Cascade Lasers written by Dan Botez and published by Cambridge University Press. This book was released on 2023-09-14 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how the rapidly expanding area of mid-infrared and terahertz photonics has been revolutionized in this comprehensive overview. State-of-the-art practical applications are supported by real-life examples and expert guidance. Also featuring fundamental theory enabling you to improve performance of both existing and future devices.

Book 2 d Coherent Power Scaling of Mid infrared Quantum Cascade Lasers

Download or read book 2 d Coherent Power Scaling of Mid infrared Quantum Cascade Lasers written by Christopher Andrew Sigler and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scaling the continuous-wave (CW) power of quantum cascade lasers (QCLs) beyond ~5 W has proven difficult, and beam-quality degradation is common when scaling the device volume for high power. The primary objective of this work was to develop methods for spatially-coherent power scaling of mid-infrared-emitting QCLs to high CW powers. Two approaches were investigated: 1) resonant leaky-wave-coupled antiguided phase-locked laser arrays; and 2) grating-coupled surface-emitting lasers (GCSELs). These two approaches can be combined to realize high surface-emitted powers in a spatially and temporally coherent beam pattern. Optical and thermal models of planarized leaky-wave-coupled phase-locked QCL arrays were coupled together to investigate the influence of thermal lensing on modal behavior. Self-focusing under thermally-induced index variations across the array were found to impact the field profile and promote multi-moding due to gain spatial hole burning. Two techniques were found to mitigate this effect: 1) employing anti-resonant reflective-optical waveguide terminations outside the array; and 2) chirping the element width across the array to obtain identical optically-equivalent widths under CW operation, eliminating thermal lensing at a particular operating condition. Five-element phase-locked arrays of 4.7 μm-emitting QCLs were demonstrated which operate in a near-diffraction-limited beam (primarily in the in-phase array mode) to 5.1 W peak pulsed power, in agreement with simulations. Spectrally resolved near- and far-field measurements indicate that the wide spectral bandwidth of the QCL core promotes multi-mode operation at high drive levels. An optimized array design was identified to allow sole in-phase mode operation to high drive levels above threshold, indicating that full spatial coherence to high output powers does not require full temporal coherence for phase-locked laser arrays. Lastly, a novel method for obtaining a single-lobed beam pattern from transverse magnetic (TM)-polarized GCSELs is proposed: resonant coupling of the optical mode of a QCL to the antisymmetric surface plasmon mode of a 2nd-order distributed feedback metal/semiconductor grating results in strong antisymmetric-mode absorption. Lasing in the symmetric mode, resulting in a single-lobed far-field beam pattern from the substrate emission, is strongly favored around resonance. For infinite-length devices, the symmetric mode has negligible absorption loss while still being efficiently outcoupled by the grating.

Book Mid infrared Quantum Cascade Lasers for Chaos Secure Communications

Download or read book Mid infrared Quantum Cascade Lasers for Chaos Secure Communications written by Olivier Spitz and published by Springer Nature. This book was released on 2021-05-15 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.

Book High Power and Efficient Mid infrared Emitting Quantum Cascade Lasers

Download or read book High Power and Efficient Mid infrared Emitting Quantum Cascade Lasers written by Suraj Suri and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solid State Mid Infrared Laser Sources

Download or read book Solid State Mid Infrared Laser Sources written by Irina T. Sorokina and published by Springer Science & Business Media. This book was released on 2003-09-04 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of authoritative reviews by leading experts provides a broad and instructive introduction to the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. With a wealth of up-to-date references – also available online.

Book Widely Tunable and High Power Mid Infrared Quantum Cascade Lasers

Download or read book Widely Tunable and High Power Mid Infrared Quantum Cascade Lasers written by and published by . This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single mode cw and pulsed distributed feedback (DFB) QC lasers with wide current tuning and high single mode power, have been realized at lambda app. = 4.6 nm; 5.2 nm, 8 nm and 9.5-10 nm and their trace gas sensing ability (parts per billion in volume or less) has been demonstrated by a variety of spectroscopic techniques. These devices, free-running and stabilized, had cw linewidths of 1 MHz and 10 KHz, respectively. Optical powers in excess of 0.5W (1W) at 300K (200K) was obtained in 75-stage structures; the cw operating temperature was increased to 175K using epitaxial-side heat sinking. New chirped superlattice active region designs yielded greater optical power per stage and allowed extension of the operating wavelength to 19 nm. These longwavelength QCLs use metal semiconductor waveguides supporting a surface plasmon mode, which allows greater optical confinement, and hence lower thresholds than conventional semiconductor waveguides of nearly double thickness. A QCL lasing simultaneously at two or more widely spaced wavelengths and a bidirectional QCL emitting different wavelengths for opposite bias polanty were demonstrated. Gain switching and active modelocking of QC lasers at 5 and 8 nm gave pulse widths of 90 ps and a few ps, respectively.

Book High power and Narrow linewidth Optimizations of Mid infrared Quantum Cascade Lasers

Download or read book High power and Narrow linewidth Optimizations of Mid infrared Quantum Cascade Lasers written by Ilia Sergachev and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Power Mid infrared Quantum Cascade Laser Array for Standoff Photoacoustic Chemical Detection

Download or read book High Power Mid infrared Quantum Cascade Laser Array for Standoff Photoacoustic Chemical Detection written by Xing Chen and published by . This book was released on 2013 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers (QCLs) are compact, portable, powerful semiconductor laser sources with emission wavelengths from mid-infrared (mid-IR) to terahertz (THz) regions of the electromagnetic spectrum. Mid-IR (i.e. wavelengths from 3 to 20 μm) QCLs are of great importance in a wide range of applications such as trace gas sensing, environmental monitoring, free space communication, medical diagnosis and so on. High power QCLs are particularly important to applications such as infrared counter measure (IRCM) and standoff chemical detections. In such applications, the system performances critically depend on the amount of power a QCL can produce. This dissertation includes two major studies: the first part of the dissertation includes design, fabrication and characterization of high power mid-IR QCL arrays; the second part involves standoff chemical detection using QCLs as laser sources and photoacoustic effect as sensing technologies.

Book High Efficiency and High Power Mid Wave Infrared Cascade Lasers

Download or read book High Efficiency and High Power Mid Wave Infrared Cascade Lasers written by and published by . This book was released on 2009 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade laser (QCL) performance continues to improve towards the requirements of applications such as infrared counter measures. However, key metrics, such as wall-plug efficiency (WPE), are still not fully met. DARPA's EMIL program continues to support progress in QCLs, and this report summarizes the Princeton team's work during Phase I of this program. Although the work systematically addressed all major facets of efficiency, the greatest advancements involved injection designs, which improved almost all efficiency components. Strain compensated QCLs with heterogeneous injectors produced low voltage defect. The active core consisted of interdigitated undoped and doped injectors followed by nominally identical optical transitions. The undoped injectors were designed with reduced voltage defect while the doped injector designs were more conventional. The measured average voltage defect was less than 79 meV. At 80 K, a 2.3 mm long, back facet high reflectance coated laser had an emission wavelength of 4.7 micrometers and output 2.3 W pulsed power with 19% peak WPE. Other QCLs emitting at 4.2 micrometers featured a low voltage defect and short injector with only four quantum wells. Devices with a voltage defect of 20 meV and a record voltage efficiency of 91% were demonstrated for pulsed operation at 180 K. Voltage efficiencies of greater than 80% were exhibited at room temperature. WPEs ranging from 21% at cryogenic temperatures to 5.3% at room temperature were achieved. Interface roughness effects were analyzed as in homogeneous broadening, explaining the temperature dependent QCL gain spectra and suggesting improved designs. Specifically, density-matrix theory revealed benefits from stronger coupling between injector and upper laser level that led to low-temperature pulsed QCLs nearing 50% WPE.

Book High Average Brightness Broad Area Quantum Cascade Lasers

Download or read book High Average Brightness Broad Area Quantum Cascade Lasers written by Matthew Michael Suttinger and published by . This book was released on 2020 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Cascade Lasers are a novel semiconductor light source with the unique property of wavelength tunability over the mid-infrared and terahertz range of frequencies. Advances since their first demonstration in 1994 have led to highly efficient designs capable of continuous room temperature operation. In lieu of increased advances in laser core efficiency, power scaling with broad area quantum cascade lasers has demonstrated enhanced continuous power. This initial work is used as a starting point for continuing advances in average brightness of quantum cascade lasers. A figure of merit calculation reliably predicts to within parts in thousands the qualitative beam profile of continuously driven and high duty cycle devices. Further, a model is developed to project performance not only in continuously driven conditions, but also in variable duty cycles. This is combined with the figure of merit calculation to guide designs for optimized average brightness.

Book Highly Efficient and Reliable Quantum Cascade Lasers

Download or read book Highly Efficient and Reliable Quantum Cascade Lasers written by Benjamin Knipfer and published by . This book was released on 2021 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mid-infrared (mid-IR) quantum cascade lasers (QCLs) have been commercially available for low power applications, however, while the desire for higher power devices is present, the efficiency and reliability are severe limitations. This work takes a multi-faceted approach to improving the reliability and efficiency of QCLs including: the identification and mitigation of failure mechanisms under high power continuous wave (CW) and quasi-continuous wave (QCW) operation, optical and thermal modeling of devices to further reduce active region heating, verification of these models using charge-coupled device (CCD) based thermoreflectance, and the introduction of interface roughness (IFR) engineered devices to reduce IFR scattering and leakage. Atom probe tomography (APT) is also employed to investigate the amount of aluminum and gallium incorporation in thin InAlAs barriers and InGaAs wells. It was found that thin layers with thicknesses less than 2 nm require an intentional aluminum or gallium overshoot in the gas phase during growth to grow the targeted compositions. This was verified when the overshoot in thin barriers resulted in the convergence of modeled and experimental emitting wavelengths. APT was also used to interrogate a few key interfaces within a 40 stage strain-compensated QCL emitting near 4.6 [mu]m. This interrogation yielded both in-plane and axial IFR parameters for barriers of high and low aluminum incorporation, and in turn high and low strain, respectively. It was found that the barrier with the highest aluminum target had a nearly 50% larger root mean square (RMS) roughness when compared to the shorter barriers. As the IFR scattering is proportional to the square of both the RMS roughness and in-plane correlation length, this finding has a significant impact on the IFR scattering and leakage. The variable IFR parameters, axial correlation length, graded interfaces, graded lattice constants, graded conduction band edge, and quaternary alloy disorder (AD) scattering have been incorporated into a scattering model. Results from this model suggest lower global lifetimes and significantly reduced transition efficiencies which results in lower IFR leakage, however, if electronic temperatures from software using non-equilibrium Green's function (NGEF) is incorporated, leakage currents remain high.

Book Mid Infrared and Terahertz Quantum Cascade Lasers

Download or read book Mid Infrared and Terahertz Quantum Cascade Lasers written by Dan Botez and published by Cambridge University Press. This book was released on 2023-06-30 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art overview of this rapidly expanding field, featuring fundamental theory, practical applications, and real-life examples.

Book Characterization of Mid infrared Quantum Cascade Lasers

Download or read book Characterization of Mid infrared Quantum Cascade Lasers written by David Patrick Burghoff and published by . This book was released on 2009 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum cascade lasers provide some of the highest output powers available for light in the mid-infrared range (from 3 to 8 m). As many of their applications require portability, designs that have a high wall-plug efficiency are essential, and were designed and grown by others to achieve this goal. However, because a large fraction of these devices did not operate at all, very few of the standard laser measurements could be performed to determine their properties. Therefore, measurements needed to be performed that could non-destructively probe the behavior of QCLs while still providing useful information. This thesis explores these types of measurements, all of which fall into the category of device spectroscopy. Through polarization-dependent transmission and photovoltaic spectroscopy, a large portion of the quantum mechanical bandstructure could be determined, along with many of the parameters characterizing crystal growth quality. In addition, high-resolution transmission spectroscopy was used to find the properties of the QCL waveguide. In order to find the correspondence between theory and experiment, bandstructure simulations were performed using a three-band p model, and two-dimensional electromagnetic simulations were performed to describe the laser's optical properties. These simulations were found to be in relatively good agreement with the device measurements, and any discrepancies were found to be consistent with problems in the growth and fabrication.

Book Mid Infrared Quantum Cascade Lasers

    Book Details:
  • Author : Alfredo Bismuto
  • Publisher : LAP Lambert Academic Publishing
  • Release : 2012-02
  • ISBN : 9783846588376
  • Pages : 208 pages

Download or read book Mid Infrared Quantum Cascade Lasers written by Alfredo Bismuto and published by LAP Lambert Academic Publishing. This book was released on 2012-02 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes the work performed by the author at the ETH Zurich, under the supervision of Prof. Jerome Faist on the optimization of high performance quantum cascade lasers (QCLs) in the Mid-IR spectral region. The main factors influencing laser performance have therefore been analyzed. In particular the optimization of the laser design in order to improve the electron tranport and the optical gain. In addition a detailed analysis of the fabrication process is performed and a novel process scheme is presented for buried heterostructure lasers.

Book Multimode Regimes in Quantum Cascade Lasers  From Coherent Instabilities to Spatial Hole Burning

Download or read book Multimode Regimes in Quantum Cascade Lasers From Coherent Instabilities to Spatial Hole Burning written by and published by . This book was released on 2009 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic experimental and theoretical study of multimode regimes has been performed in high power mid-infrared quantum cascade lasers (QCLs). In narrow devices it is found that above a second threshold the laser spectrum dramatically broadens showing multimode operation with pronounced Rabi sidebands in the envelope of the spectrum. This represents the first direct evidence of the coherent instability associated with population oscillations at the Rabi frequency. For ridge widths much larger than the wavelength, the Rabi sidebands disappear.