Download or read book High order summation by parts based approximations for discontinuous and nonlinear problems written by Cristina La Cognata and published by Linköping University Electronic Press. This book was released on 2017-09-14 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical approximations using high order finite differences on summation-byparts (SBP) form are investigated for discontinuous and fully nonlinear systems of partial differential equations. Stability and conservation properties of the approximations are obtained through a weak imposition of interface and boundary conditions with the simultaneous-approximation-term (SAT) technique. The SBP-SAT approximations replicate the continuous integration by parts rule. From this property, well-posedness and integral properties of the continuous problem are mimicked, and energy estimates leading to stability are obtained. The first part of the thesis focuses on the simulations of discontinuous linear advection problems. An artificial interface is introduced, separating parts of the spatial domain characterized by different wave speeds. A set of flexible stability conditions at the interface are derived, which can be adapted to yield conservative or non-conservative approximations. This model can be interpreted as a simplified version of nonlinear problems involving jumps at shocks, or as a prototypical of wave propagation through different materials. In the second part of the thesis, the vorticity/stream function formulation of the nonlinear momentum equation for an incompressible inviscid fluid is considered. SBP operators are used to derive a new Arakawa-like Jacobian with mimetic properties by combining different consistent approximations of the convection terms. Energy and enstrophy conservation is obtained for periodic problems using schemes with arbitrarily high order of accuracy. These properties are crucial for long-term numerical calculations in climate and weather forecasts or ocean circulation predictions. The third and final contribution of the thesis is dedicated to the incompressible Navier-Stokes problem. First, different completely general formulations of energy bounding boundary conditions are derived for the nonlinear equations. The boundary conditions can be used at both far field and solid wall boundaries. The discretisation in time and space with weakly imposed initial and boundary conditions using the SBP-SAT framework is proved to be stable and the divergence free condition is approximated with the design order of the scheme. Next, the same formulations are considered in a linearised setting, whereupon the spectra associated with the initial boundary value problem and its SBP-SAT discretisation are derived using the Laplace-Fourier technique. The influence of different boundary conditions on the spectrum and in particular the convergence to steady state is studied.
Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 written by Marco L. Bittencourt and published by Springer. This book was released on 2017-11-07 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 written by Spencer J. Sherwin and published by Springer Nature. This book was released on 2020-08-11 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020 1 written by Jens M. Melenk and published by Springer Nature. This book was released on 2023-06-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.
Download or read book Shock capturing and high order methods for hyperbolic conservation laws written by Jan Glaubitz and published by Logos Verlag Berlin GmbH. This book was released on 2020-03-20 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is concerned with the numerical treatment of hyperbolic conservation laws. These play an important role in describing many natural phenomena. Challenges in their theoretical as well as numerical study stem from the fact that spontaneous shock discontinuities can arise in their solutions, even in finite time and smooth initial states. Moreover, the numerical treatment of hyperbolic conservations laws involves many different fields from mathematics, physics, and computer science. As a consequence, this thesis also provides contributions to several different fields of research - which are still connected by numerical conservation laws, however. These contributions include, but are not limited to, the construction of stable high order quadrature rules for experimental data, the development of new stable numerical methods for conservation laws, and the investigation and design of shock capturing procedures as a means to stabilize high order numerical methods in the presence of (shock) discontinuities. Jan Glaubitz was born in Braunschweig, Germany, in 1990 and completed his mathematical studies (B.Sc., 2014, M.Sc., 2016, Dr. rer. nat., 2019) at TU Braunschweig. In 2016, he received awards from the German Mathematical Society (DMV) for his master's thesis as well as from the Society of Financial and Economic Mathematics of Braunschweig (VBFWM). In 2017, he was honored with the teaching award "LehrLEO" for the best tutorial at TU Braunschweig. Since 2020, he holds a position as a postdoctoral researcher at Dartmouth College, NH, USA.
Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Download or read book Frontiers in Physics Rising Stars written by Alex Hansen and published by Frontiers Media SA. This book was released on 2021-10-04 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Efficient High Order Discretizations for Computational Fluid Dynamics written by Martin Kronbichler and published by Springer Nature. This book was released on 2021-01-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.
Download or read book Finite Volumes for Complex Applications X Volume 2 Hyperbolic and Related Problems written by Emmanuel Franck and published by Springer Nature. This book was released on 2023-10-12 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book High Order Difference Methods for Time Dependent PDE written by Bertil Gustafsson and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers high order finite difference methods for time dependent PDE. It gives an overview of the basic theory and construction principles by using model examples. The book also contains a general presentation of the techniques and results for well-posedness and stability, with inclusion of the three fundamental methods of analysis both for PDE in its original and discretized form: the Fourier transform, the eneregy method and the Laplace transform.
Download or read book Polynomial Chaos Methods for Hyperbolic Partial Differential Equations written by Mass Per Pettersson and published by Springer. This book was released on 2015-03-10 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero. Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems. Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.
Download or read book Advances in Applied Mathematics Modeling and Computational Science written by Roderick Melnik and published by Springer Science & Business Media. This book was released on 2012-09-23 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume presents a selection of in-depth studies and state-of-the-art surveys of several challenging topics that are at the forefront of modern applied mathematics, mathematical modeling, and computational science. These three areas represent the foundation upon which the methodology of mathematical modeling and computational experiment is built as a ubiquitous tool in all areas of mathematical applications. This book covers both fundamental and applied research, ranging from studies of elliptic curves over finite fields with their applications to cryptography, to dynamic blocking problems, to random matrix theory with its innovative applications. The book provides the reader with state-of-the-art achievements in the development and application of new theories at the interface of applied mathematics, modeling, and computational science. This book aims at fostering interdisciplinary collaborations required to meet the modern challenges of applied mathematics, modeling, and computational science. At the same time, the contributions combine rigorous mathematical and computational procedures and examples from applications ranging from engineering to life sciences, providing a rich ground for graduate student projects.
Download or read book Handbook of Numerical Methods for Hyperbolic Problems written by Remi Abgrall and published by Elsevier. This book was released on 2016-11-17 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications - Written by leading subject experts in each field who provide breadth and depth of content coverage
Download or read book Theory Numerics and Applications of Hyperbolic Problems II written by Christian Klingenberg and published by Springer. This book was released on 2018-06-27 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Download or read book Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws written by Philipp Öffner and published by Springer Nature. This book was released on 2023-09-17 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on stability and approximation results concerning recent numerical methods for the numerical solution of hyperbolic conservation laws. The work begins with a detailed and thorough introduction of hyperbolic conservation/balance laws and their numerical treatment. In the main part, recent results in such context are presented focusing on the investigation of approximation properties of discontinuous Galerkin and flux reconstruction methods, the construction of (entropy) stable numerical methods and the extension of existing (entropy) stability results for both semidiscrete and fully discrete schemes, and development of new high-order methods.
Download or read book Time Dependent Problems and Difference Methods written by Bertil Gustafsson and published by John Wiley & Sons. This book was released on 1995 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Dependent Problems and Difference Methods addresses these various industrial considerations in a pragmatic and detailed manner, giving special attention to time dependent problems in its coverage of the derivation and analysis of numerical methods for computational approximations to Partial Differential Equations (PDEs).