EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book High Order FDTD Methods for Electromagnetic Systems in Dispersive Inhomogeneous Media

Download or read book High Order FDTD Methods for Electromagnetic Systems in Dispersive Inhomogeneous Media written by Duc D. Nguyen and published by . This book was released on 2015 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents matched interface and boundary time-domain (MIBTD) methods for solving both transverse magnetic (TM) and transverse electric (TE) Maxwell's equations in non-dispersive and dispersive media with complex interfaces and discontinuous wave solutions. In this thesis, five following problems will be discussed: (1) Dielectric interface problems; (2) Debye dispersive interface problems in TM mode; (3) Drude dispersive interface problems in TM mode; (4) Debye dispersive interface problems in TE mode; and (5) Perfectly matched layer (PML) boundary conditions for dispersive interface problems. It is well known in the electromagnetic interface problems that field components across the interfaces are often nonsmooth of even discontinuous. Consequently, the finite-difference time-domain (FDTD) algorithms without a proper interface treatment will cause a staircasing error when dealing with arbitrary interfaces; and only first-order of accuracy is achieved by those FDTD methods. Thus, to restore the accuracy reduction of the collocation FDTD approach near an interface, the physical jump conditions relating discontinuous wave solutions on both sides of the interface must be rigorously enforced. For this purpose, a novel matched interface and boundary (MIB) scheme is proposed to handle material interface problems, in which new jump conditions are derived so that the discontinuous and staggered features of electric and magnetic field components can be accommodated. That results in the staircasing error is totally eliminated in the dielectric interface problems. However, in the dispersive materials like Debye media, interface conditions are now time-dependent. Thus, interface auxiliary differential equations (IADEs) are utilized to describe the transient changes in the regularities of electromagnetic fields across a Debye dispersive interface. In addition, in TM mode, to assist the track of the jump condition information along the interface, a novel hybrid system, which couples the wave equation for the electric component with Maxwell's equations for the magnetic components, is constructed based on the auxiliary differential equation (ADE) approach. As a result, the staircasing error is also eradicated for the Debye interface problems. However, this MIBTD approach is only designed for Debye material equations formed by first-order ADE. Because of that, the MIBTD algorithm for the problem (2) cannot be directly extended to solve Drude dispersive interface problems having second-order ADE. To achieve high order accuracy for the problem (3), a novel hybrid Drude-Maxwell system and IADEs are also formulated to update the regularity change of the field components across interfaces so that the staircasing error is free in the numerical results. In the dispersive interface problems in TE mode, the jump conditions of the electric components become more complicated than in the TM mode case, and rigorously depend on the unknown flux density fields. Therefore, the standard Maxwell's equations are taken into consideration instead of the hybrid system. The leapfrog scheme is employed to simplify the complexities of the jump conditions' derivations in the TE mode, whereas the fourth-order Runge-Kutta method is exploited in the other cases. In any material interface problems, effective MIB treatments are proposed to rigorously impose the physical jump conditions which are not only time dependent, but also couple both Cartesian directions and different field components. Based on a staggered Yee lattice, the proposed MIB schemes can achieve up to sixth order-accuracy in dealing with the straight interfaces, while the uniform second-order accuracy is always maintained in solving irregular interfaces with constant curvatures, general curvatures, and nonsmooth corners. Based on the numerical verification, our MIBTD algorithms are conditionally stable and more cost-efficient than the classical FDTD methods. Finally, the Berenger's PML is successfully used as absorbing boundary condition (ABC) for the dispersive interface problems. The numerical results are provided to validate the efficiency of that PML ABC.

Book Numerical Electromagnetics

    Book Details:
  • Author : Umran S. Inan
  • Publisher : Cambridge University Press
  • Release : 2011-04-07
  • ISBN : 1139497987
  • Pages : 405 pages

Download or read book Numerical Electromagnetics written by Umran S. Inan and published by Cambridge University Press. This book was released on 2011-04-07 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.

Book Introduction to the Finite Difference Time Domain  FDTD  Method for Electromagnetics

Download or read book Introduction to the Finite Difference Time Domain FDTD Method for Electromagnetics written by Stephen Gedney and published by Springer Nature. This book was released on 2022-05-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Book FDTD based Full Wave Co simulation Model for Hybrid Electromagnetic Systems

Download or read book FDTD based Full Wave Co simulation Model for Hybrid Electromagnetic Systems written by Tong Li and published by . This book was released on 1999 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: In high-frequency ranges, the present electronic design automation software has limited capabilities to model electromagnetic (EM) systems where there are strong field effects influencing their characteristics. In this situation, a full-wave simulation tool is desired for the analysis and design of high-speed and non-linear EM systems. It is necessary to explore the interaction between the field and electronic components during a transient process when field effects are more significant. The finite-difference time-domain (FDTD) technique receives growing attention in the area of EM system analysis and simulation due to its simplicity, flexibility and robustness. It is a full-wave simulation method that solves the Maxwell's equations in time domain directly. Decades of research and development and rapid growth in computer capability have built up a firm foundation for FDTD techniques to be applied to many practical problems. Based on FDTD, this dissertation develops a stable CO-simulation method to perform a full-wave simulation of a hybrid EM system consisting of lumped elements and distributed structures. In this method, FDTD is used to solve the EM field problems associated with distributed structures, and a circuit simulator solves the response of lumped elements. A field-circuit model proposed in the dissertation serves as the interface between the two simulation tools. Compared with previous methods, the FDTD method based on this model is much more flexible and stable for linear and nonlinear lumped elements under both small and large signal conditions. Because of its flexibility and robustness, this model is a promising approach to integrate a field solver and a circuit simulator in the simulations of practical EM systems. In order to improve the simulation accuracy, some problems related to FDTD simulation are studied. Based on the numerical dispersion in homogeneous media uniform grids, the FDTD numerical reflection and transmission on the boundary of media, which are discritized by a non-uniform grid, are investigated. This investigation provides for the first time an estimation of FDTD numerical error in inhomogeneous media and non-uniform grids. Perfectly matched layer (PML) was previously utilized the homogeneous media or uniform grids. This dissertation extends the PML boundary conditions to handle the inhomogeneous media and non-uniform grid. Techniques extracting S parameters from FDTD simulation are also discussed. Two and three-dimensional CO-simulation software, written in C++, has be derived, developed and verified in this dissertation. The simulation results agree well with results from other simulation methods, like SPICE, for many test circuits. Taking data sampling and interpolation into account, simulation results generally fit well to measurement and other simulation results for complicated three-dimensional structures. With further improvements of the FDTD technique and circuit simulation, field-circuit CO-simulation model will widen its application to general EM systems.

Book High Order FDTD Numerical Electromagnetic Schemes

Download or read book High Order FDTD Numerical Electromagnetic Schemes written by Abbas Alighanbari and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-order finite-difference time-domain techniques are the focus of the present book. Specifically, scaling function-based multi-resolution time-domain (S-MRTD) techniques are applied to the solution of large-scale electromagnetic problems. Such techniques can be extremely enabling when computation cost is high, due to the presence of large homogenuous media in a specific electromagnetic problem. The methodologies can be used for modeling RF, microwave, mm-wave, and optical devices and propagation problems.

Book Adaptive Interference Cancelation Techniques for Multicarrier Modulated Systems

Download or read book Adaptive Interference Cancelation Techniques for Multicarrier Modulated Systems written by Matthijs A. Visser and published by . This book was released on 1999 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In high-frequency ranges, the present electronic design automation software has limited capabilities to model electromagnetic (EM) systems where there are strong field effects influencing their characteristics. In this situation, a full-wave simulation tool is desired for the analysis and design of high-speed and non-linear EM systems. It is necessary to explore the interaction between the field and electronic components during a transient process when field effects are more significant. The finite-difference time-domain (FDTD) technique receives growing attention in the area of EM system analysis and simulation due to its simplicity, flexibility and robustness. It is a full-wave simulation method that solves the Maxwell's equations in time domain directly. Decades of research and development and rapid growth in computer capability have built up a firm foundation for FDTD techniques to be applied to many practical problems. Based on FDTD, this dissertation develops a stable CO-simulation method to perform a full-wave simulation of a hybrid EM system consisting of lumped elements and distributed structures. In this method, FDTD is used to solve the EM field problems associated with distributed structures, and a circuit simulator solves the response of lumped elements. A field-circuit model proposed in the dissertation serves as the interface between the two simulation tools. Compared with previous methods, the FDTD method based on this model is much more flexible and stable for linear and nonlinear lumped elements under both small and large signal conditions. Because of its flexibility and robustness, this model is a promising approach to integrate a field solver and a circuit simulator in the simulations of practical EM systems. In order to improve the simulation accuracy, some problems related to FDTD simulation are studied. Based on the numerical dispersion in homogeneous media uniform grids, the FDTD numerical reflection and transmission on the boundary of media, which are discritized by a non-uniform grid, are investigated. This investigation provides for the first time an estimation of FDTD numerical error in inhomogeneous media and non-uniform grids. Perfectly matched layer (PML) was previously utilized the homogeneous media or uniform grids. This dissertation extends the PML boundary conditions to handle the inhomogeneous media and non-uniform grid. Techniques extracting S parameters from FDTD simulation are also discussed. Two and three-dimensional CO-simulation software, written in C++, has be derived, developed and verified in this dissertation. The simulation results agree well with results from other simulation methods, like SPICE, for many test circuits. Taking data sampling and interpolation into account, simulation results generally fit well to measurement and other simulation results for complicated three-dimensional structures. With further improvements of the FDTD technique and circuit simulation, field-circuit CO-simulation model will widen its application to general EM systems.

Book Non linear Electromagnetic Systems

Download or read book Non linear Electromagnetic Systems written by Paolo Di Barba and published by IOS Press. This book was released on 2000 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a collection of contributions covering a wide range of topics of interdisciplinary character, from materials to systems, from microdevices to large equipment, with special emphasis on emerging subjects and particular attention to advanced computational methods in order to model both devices and systems. The book provides the solution to challenging problems of research on non-linear electromagnetic systems and is expected to help researchers working in this broad area.

Book Advances in Time Domain Computational Electromagnetic Methods

Download or read book Advances in Time Domain Computational Electromagnetic Methods written by Qiang Ren and published by John Wiley & Sons. This book was released on 2022-11-15 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Book Electromagnetic Simulation Techniques Based on the FDTD Method

Download or read book Electromagnetic Simulation Techniques Based on the FDTD Method written by W. Yu and published by John Wiley & Sons. This book was released on 2009-09-15 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridges the gap between FDTD theory and the implementation of practical simulation techniques This is the first publication that guides readers step by step through the implementation of electromagnetic simulation techniques based on FDTD methods. These simulation techniques serve as an essential bridge between FDTD methods and their applications. Moreover, the book helps readers better understand the underlying logic of FDTD methods so that they can design FDTD projects using either commercial electromagnetic software packages or their own codes in order to solve practical engineering problems. The book begins with two chapters that introduce the basic concepts of the 3-D Cartesian FDTD method, followed by discussions of advanced FDTD methods such as conformal techniques, dispersive media, circuit elements, and near-to-far field transformation. Next, the book: Presents basic concepts of parallel processing techniques and systems, including parallel FDTD techniques and systems Explores simulation techniques based on FDTD methods Illustrates practical simulation techniques using engineering applications Introduces advanced simulation techniques Each chapter concludes with references to help readers investigate particular topics in greater depth. Each chapter also includes problem sets that challenge readers to put their new FDTD and simulation skills into practice. By bridging the gap between FDTD theory and practical simulation techniques, this publication is an invaluable guide for students and engineers who need to solve a wide range of design problems in RF, antenna, and microwave engineering.

Book Advances in FDTD Computational Electrodynamics

Download or read book Advances in FDTD Computational Electrodynamics written by Allen Taflove and published by Artech House. This book was released on 2013 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.

Book Electromagnetic Simulation Using the FDTD Method

Download or read book Electromagnetic Simulation Using the FDTD Method written by Dennis M. Sullivan and published by John Wiley & Sons. This book was released on 2013-05-17 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Book FDTD Modeling of Metamaterials  Theory and Applications

Download or read book FDTD Modeling of Metamaterials Theory and Applications written by Yang Hao and published by Artech House. This book was released on 2008-10-01 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master powerful new modeling tools that let you quantify and represent metamaterial properties with never-before accuracy. This first-of-its-kind book brings you up to speed on breakthrough finite-difference time-domain techniques for modeling metamaterial characteristics and behaviors in electromagnetic systems. This practical resource comes complete with sample FDTD scripts to help you pave the way to new metamaterial applications and advances in antenna, microwave, and optics engineering. You get in-depth coverage of state-of-the-art FDTD modeling techniques and applications for electromagnetic bandgap (EBG) structures, left-handed metamaterials (LHMs), wire medium, metamaterials for optics, and other practical metamaterials. You find steps for computing dispersion diagrams, dealing with material dispersion properties, and verifying the left-handedness. Moreover, this comprehensive volume offers guidance for handling the unique properties possessed by metamaterials, including how to define material parameters, characterize the interface of metamaterial slabs, and quantify their spatial as well as frequency dispersion characteristics. The book also presents conformal and dispersive FDTD modeling of electromagnetic cloaks, perfect lens, and plasmonic waveguides, as well as other novel antenna, microwave, and optical applications. Over 190 illustrations support key topics throughout the book.

Book Subsurface Sensing

    Book Details:
  • Author : Ahmet S. Turk
  • Publisher : John Wiley & Sons
  • Release : 2011-07-06
  • ISBN : 0470608560
  • Pages : 916 pages

Download or read book Subsurface Sensing written by Ahmet S. Turk and published by John Wiley & Sons. This book was released on 2011-07-06 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a solid understanding of the capabilities and limitations of the techniques used for buried object detection. Presenting theory along with applications and the existing technology, it covers the most recent developments in hardware and software technologies of sensor systems with a focus on primary sensors such as Ground Penetrating Radar (GPR) and auxiliary sensors such as Nuclear Quadruple Resonance (NQR). It is essential reading for students, practitioners, specialists, and academicians involved in the design and implementation of buried object detection sensors.

Book Science Abstracts

Download or read book Science Abstracts written by and published by . This book was released on 1995 with total page 1874 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Non Stationary Electromagnetics

Download or read book Non Stationary Electromagnetics written by Alexander Nerukh and published by CRC Press. This book was released on 2018-10-26 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the investigations of non-stationary electromagnetic processes. The investigations are undertaken analytically mainly using the Volterra integral equations approach. The book contains a systematic statement of this approach for the investigations of electrodynamics phenomena in the time domain and new results and applications in microwave techniques and photonics. Particular consideration is given to electromagnetic transients in time-varying media and their potential applications. The approach is formulated and electromagnetic phenomena are investigated in detail for a hollow metal waveguide, which contains moving dielectric or plasma-bounded medium, and dielectric waveguides with time-varying medium inside a core.

Book Time Domain Methods in Electrodynamics

Download or read book Time Domain Methods in Electrodynamics written by Peter Russer and published by Springer Science & Business Media. This book was released on 2008-09-26 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of contributions given in honor of Wolfgang J.R. Hoefer. Space and time discretizing time domain methods for electromagnetic full-wave simulation have emerged as key numerical methods in computational electromagnetics. Time domain methods are versatile and can be applied to the solution of a wide range of electromagnetic field problems. Computing the response of an electromagnetic structure to an impulsive excitation localized in space and time provides a comprehensive characterization of the electromagnetic properties of the structure in a wide frequency range. The most important methods are the Finite Difference Time Domain (FDTD) and the Transmission Line Matrix (TLM) methods. The contributions represent the state of the art in dealing with time domain methods in modern engineering electrodynamics for electromagnetic modeling in general, the Transmission Line Matrix (TLM) method, the application of network concepts to electromagnetic field modeling, circuit and system applications and, finally, with broadband devices, systems and measurement techniques.

Book Communications Engineering e Mega Reference

Download or read book Communications Engineering e Mega Reference written by Erik Dahlman and published by Academic Press. This book was released on 2009-03-23 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-stop Desk Reference, for R&D engineers involved in communications engineering; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the field. Material covers a wide scope of topics including voice, computer, facsimile, video, and multimedia data technologies * A fully searchable Mega Reference Ebook, providing all the essential material needed by Communications Engineers on a day-to-day basis. * Fundamentals, key techniques, engineering best practice and rules-of-thumb together in one quick-reference.* Over 2,500 pages of reference material, including over 1,500 pages not included in the print edition