EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book X ray waveguide optics

    Book Details:
  • Author : Sarah Hoffmann-Urlaub
  • Publisher : Göttingen University Press
  • Release : 2017
  • ISBN : 3863953088
  • Pages : 134 pages

Download or read book X ray waveguide optics written by Sarah Hoffmann-Urlaub and published by Göttingen University Press. This book was released on 2017 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern x-ray sources and analysis techniques such as lens less imaging combined with phase retrieval algorithms allow for resolving structure sizes in the nanometer range. For this purpose optics have to be employed, ensuring small focal spot dimensions simultaneously with high photon densities. Furthermore, the wave front behind the optics is required to be smooth enabling for high resolution imaging. Combining all these properties, x-ray waveguides are well suited to perform this task, since the intensity distribution behind the guide is restricted in two dimensions serving as a secondary quasi point-source without wave-front aberrations, showing also a high divergence, suitable for resolving fine features. Importantly, the radiation provided by the waveguide reveals a high degree of coherence, required by many imaging techniques. The waveguide itself consists of an air-filled channel embedded in a solid matrix; typical materials are silicon, germanium or quartz. While the entrance area is nano-sized, the channel length is in the millimeter-range, this way posing challenges to fabricate high aspect ratio geometries. Since the functioning of x-ray waveguides is based on the total reflection at small incident angles, the surface roughness of the channel walls must be as low as possible to avoid scattering and hence loss of intensity. To fulfill these demanding conditions, a process scheme involving spin-coating, electron beam lithography, wet development, reactive ion etching and wafer bonding is optimized within this work. To gain deeper insights into the principle of wave guiding finite difference simulations are performed, also opening access for advanced design considerations such as gratings, tapered and curved channels, or beamsplitters, enabling for constructing novel x-ray tools as for example time delay devices or interferometers. Waveguides in all geometries are tested at synchrotron sources, accomplishing new benchmarks in x-ray optical performance. Here, the x-ray beam leaving the channel, propagates out to a pixel array detector in the far-field region. From the recorded data the intensity distribution in the near-field directly behind the waveguide is reconstructed, revealing an outstanding agreement with the simulations and electron micrographs. Since the radiation field of the waveguide is well-characterized and also tunable to meet the requirements of both the measurement setup and the sample, they are suited of a broad field of applications in coherent x-ray imaging.

Book Advanced x ray multilayer waveguide optics

Download or read book Advanced x ray multilayer waveguide optics written by Qi Zhong and published by Göttingen University Press. This book was released on 2017 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this thesis was to design novel waveguide structures, and to analyze them in view of complex phenomena of near-field propagation. For this purpose, experimental far-field measurements were used in combination with finite-difference simulations and phase retrieval methods. Two novel structures have been designed, fabricated and characterized: the waveguide array (WGA), yielding several waveguided beams in transmission, and multi-guide resonate beam couplers (RBCs), tailored to yield two or several reflected beams. Two novel structures have been designed, fabricated and characterized: the WGA, yielding several waveguided beams in transmission, and multi-guide RBCs, tailored to yield two or several reflected beams. The WGA and the multi-guide RBCs are not only distinct in the coupling geometry. A major difference is related to the fact that the WGA principle is based on the separation (non coupling) of the different transmitted wavelets, while the RBC functions are based on a strong coupling of guided radiation in several layers.

Book Hard X ray Waveguide Optics

Download or read book Hard X ray Waveguide Optics written by Ansgar Jarre and published by . This book was released on 2005 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimization of Waveguide Optics for Lensless X ray Imaging

Download or read book Optimization of Waveguide Optics for Lensless X ray Imaging written by Sven Philip Krüger and published by Universitätsverlag Göttingen. This book was released on 2011 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lensless x-ray imaging is a promising method to determine the three-dimensional structure of material science and biological specimens at the nanoscale. The development of this technique is strongly related to the optimization of x-ray optics since the image formation and object reconstruction depend significantly on the properties of the illumination wave-field. Waveguide optics act as quasi-point sources and enable the spatial and coherent filtering of x-ray beams. Up to now, x-ray waveguides were severely limited in transmission and flux, restricting their use to high-contrast test structures with moderate resolution and long accumulation times. To overcome these limitations, a novel waveguide design with an optimized refractive index profile is presented which significantly minimizes the absorption of the modes propagating inside the waveguide. Experimental results along with simulations show that these two-component planar x-ray waveguides provide small beam cross-sections along with a high photon flux at the exit. By a serial arrangement of two waveguide slices an optimized illumination source has been developed for high-resolution microscopy, as demonstrated in proof-of-concept imaging experiments.

Book X ray Waveguide Optics  Beyond Straight Channels

Download or read book X ray Waveguide Optics Beyond Straight Channels written by Sarah Hoffmann-Urlaub and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern x-ray sources and analysis techniques such as lens less imaging combined with phase retrieval algorithms allow for resolving structure sizes in the nanometerrange. For this purpose optics have to be employed, ensuring small focal spot dimensions simultaneously with high photon densities. Furthermore, the wave front behind the optics is required to be smooth enabling for high-resolution imaging. Combining all these properties, x-ray waveguides are well suited to perform this task, since the intensity distribution behind the guide is restricted in two dimensions serving as a secondary ...

Book A Dedicated Endstation for Waveguide based X ray Imaging

Download or read book A Dedicated Endstation for Waveguide based X ray Imaging written by Sebastian Kalbfleisch and published by Universitätsverlag Göttingen. This book was released on 2013 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modern Developments in X Ray and Neutron Optics

Download or read book Modern Developments in X Ray and Neutron Optics written by Alexei Erko and published by Springer Science & Business Media. This book was released on 2008-04-14 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes modern developments in reflective, refractive and diffractive optics for short wavelength radiation. It also covers recent theoretical approaches to modelling and ray-tracing the x-ray and neutron optical systems. It is based on the joint research activities of specialists in x-ray and neutron optics, working together under the framework of the European Programme for Cooperation in Science and Technology (COST, Action P7) in the period 2002-2006.

Book Wave Optical Simulations of X ray Nano focusing Optics

Download or read book Wave Optical Simulations of X ray Nano focusing Optics written by Markus Osterhoff and published by Universitätsverlag Göttingen. This book was released on 2012 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Curved x-ray multilayer mirrors focus synchrotron beams down to tens of nano metres. A wave-optical theory describing propagation of two waves in an elliptically curved focusing multilayer mirror is developed in this thesis. Using numerical integration, the layer shapes can be optimised for reflectivity and aberrations. Within this framework, performance of both existing and currently upgraded synchrotron beamlines is simulated. Using a more theoretical model case, limits of the theory are studied. A significant part of this work is dedicated to partial spatial coherence, modelled using the method of stochastic superpositions. Coherence propagation and filtering by x-ray waveguides is shown analytically and numerically. This comprehensive model is put forward that shall help in development and testing of new algorithms for a variety of imaging techniques using coherent x-ray beams. Advanced simulations accounting for real structure effects are compared to experimental data obtained at the GINIX instrument at the coherence beamline P10 at PETRA III, DESY. This thesis presents results of a collaboration between the Georg-August-Universität Göttingen and the European Synchrotron Radiation Facility (ESRF) Grenoble.

Book Coherent X Ray Optics

    Book Details:
  • Author : David Paganin
  • Publisher : OUP Oxford
  • Release : 2006-01-12
  • ISBN : 019152431X
  • Pages : 424 pages

Download or read book Coherent X Ray Optics written by David Paganin and published by OUP Oxford. This book was released on 2006-01-12 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a thorough treatment of the rapidly-expanding field of coherent x-ray optics, which has recently experienced something of a renaissance with the availability of third-generation synchrotron sources. It is the first book of its kind. The author begins with a treatment of the fundamentals of x-ray diffraction for both coherent and partially coherent radiation, together with the interactions of x-rays with matter. X-ray sources, optics elements and detectors are then discussed, with an emphasis on their role in coherent x-ray optics. Various facets of coherent x-ray imaging are then discussed, including holography, interferometry, self imaging, phase contrast and phase retrieval. Lastly, the foundations of the new field of singular x-ray optics are examined. Most topics are developed from first principles, with numerous references given to the contemporary research literature. This book will be useful to x-ray physicists and students, together with optical physicists and engineers who wish to learn more about the fascinating subject of coherent x-ray optics.

Book Advanced X ray Multilayer Waveguide Optics

Download or read book Advanced X ray Multilayer Waveguide Optics written by Qi Zhong and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this thesis is to demonstrate that x-ray waveguide optics can be gen- eralized from a single guiding film to an array of planar waveguides, enabling more complex and controllable phenomena of field propagation both in partic- ular in the near-field in the vicinity of objects to be probed by coherent imaging. Two advanced x-ray multilayer waveguides (MWGs) structures, i.e. the waveg- uide array (WGA) and the multi-guide resonant beam couplers (RBCs) are de- signed and discussed. Starting from basic theoretical analysis, the structural model of MWGs is built up. Then the MWGs are s...

Book Advances in X ray Optics

    Book Details:
  • Author : Andreas K. Freund
  • Publisher : SPIE-International Society for Optical Engineering
  • Release : 2001
  • ISBN :
  • Pages : 350 pages

Download or read book Advances in X ray Optics written by Andreas K. Freund and published by SPIE-International Society for Optical Engineering. This book was released on 2001 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hard X ray Microscopy Enhanced by Coherent Image Reconstruction

Download or read book Hard X ray Microscopy Enhanced by Coherent Image Reconstruction written by Jakob Soltau and published by Universitätsverlag Göttingen. This book was released on 2022 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray microscopy is used to study the structure, dynamics and bulk properties of matter with high spatial resolutions. It is widely applied, from physics and chemistry to material and life sciences. In the past two decades, progress in X-ray microscopy was driven either by improvements in X-ray optics or by improvements in the image reconstruction by using algorithms as computational lenses. In this work both approaches are combined to exploit the advantages of X-ray imaging with a large numerical aperture and the advantages of coherent image reconstruction. It is shown that a combined X-ray microscope using both, advanced optics and algorithms, is neither limited by flawed optics nor by constraints imposed by reconstruction algorithms, which enables to go beyond current limits in resolution and applications. The thesis is structured in four parts. In the first part hard X-ray lenses, so called multilayer zone plates, are simulated to investigate volume diffraction effects within the multilayer structure, and to study the potential for smaller focus sizes and higher efficiencies. In the second part, the multilayer zone plates are characterized and implemented in an X-ray microscope. In the third part, a new imaging scheme is presented, which combines in-line holography and coherent diffractive imaging. This method overcomes the current resolution limit of in-line holography and can achieve super-resolution with respect to the numerical aperture of the illuminating beam. Finally, in the fourth part a multilayer zone plate is used as an objective lens with a known transfer function in a novel coherent full-field imaging experiment based on iterative phase retrieval, for high resolution and quantitative contrast.

Book Modern Developments in X Ray and Neutron Optics

Download or read book Modern Developments in X Ray and Neutron Optics written by Alexei Erko and published by Springer. This book was released on 2008-04-01 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes modern developments in reflective, refractive and diffractive optics for short wavelength radiation. It also covers recent theoretical approaches to modelling and ray-tracing the x-ray and neutron optical systems. It is based on the joint research activities of specialists in x-ray and neutron optics, working together under the framework of the European Programme for Cooperation in Science and Technology (COST, Action P7) in the period 2002-2006.

Book Coherent X ray diffractive imaging on the single cell level of microbial samples

Download or read book Coherent X ray diffractive imaging on the single cell level of microbial samples written by Robin Niklas Wilke and published by Göttingen University Press. This book was released on 2015 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its first experimental demonstration in 1999, Coherent X-Ray Diffractive Imaging has become one of the most promising high resolution X-Ray imaging techniques using coherent radiation produced by brilliant synchrotron storage rings. The ability to directly invert diffraction data with the help of advanced algorithms has paved the way for microscopic investigations and wave-field analyses on the spatial scale of nanometres without the need for inefficient imaging lenses. X-Ray phase contrast which is a measure of the electron density is an important contrast mode of soft biological specimens. For the case of many dominant elements of soft biological matter, the electron density can be converted into an effective mass density offering a unique quantitative information channel which may shed light on important questions such as DNA compaction in the bacterial nucleoid through ‚weighing with light‘. In this work X-Ray phase contrast maps have been obtained from different biological samples by exploring different methods. In particular, the techniques Ptychography and Waveguide-Holographic-Imaging have been used to obtain twodimensional and three-dimensional mass density maps on the single-cell-level of freeze-dried cells of the bacteria Deinococcus radiodurans, Bacillus subtilis and Bacillus thuringiensis allowing, for instance, to estimate the dry weight of the bacterial genome in a near native state. On top of this, reciprocal space information from coherent small angle X-Ray scattering (cellular Nano-Diffraction) of the fine structure of the bacterial cells has been recorded in a synergistic manner and has been analysed down to a resolution of about 2.3/nm exceeding current limits of direct imaging approaches. Furthermore, the dynamic range of present detector technology being one of the major limiting factors of ptychographic phasing of farfield diffraction data has been significantly increased. Overcoming this problem for the case of the very intense X-Ray beam produced by Kirkpatrick-Baez mirrors has been explored by using semi-transparent central stops.

Book Nanoscale Photonic Imaging

Download or read book Nanoscale Photonic Imaging written by Tim Salditt and published by Springer Nature. This book was released on 2020-06-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Book X ray Standing Wave Technique  The  Principles And Applications

Download or read book X ray Standing Wave Technique The Principles And Applications written by Jorg Zegenhagen and published by World Scientific. This book was released on 2013-01-30 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: The X-ray standing wave (XSW) technique is an X-ray interferometric method combining diffraction with a multitude of spectroscopic techniques. It is extremely powerful for obtaining information about virtually all properties of surfaces and interfaces on the atomic scale. However, as with any other technique, it has strengths and limitations. The proper use and necessary understanding of this method requires knowledge in quite different fields of physics and technology. This volume presents comprehensively the theoretical background, technical requirements and distinguished experimental highlights of the technique. Containing contributions from the most prominent experts of the technique, such as Andre Authier, Boris Batterman, Michael J Bedzyk, Jene Golovchenko, Victor Kohn, Michail Kovalchuk, Gerhard Materlik and D Phil Woodruff, the book equips scientists with all the necessary information and knowledge to understand and use the XSW technique in practically all applications.

Book Multiscale X Ray Analysis of Biological Cells and Tissues by Scanning Diffraction and Coherent Imaging

Download or read book Multiscale X Ray Analysis of Biological Cells and Tissues by Scanning Diffraction and Coherent Imaging written by Jan-David Nicolas and published by Göttingen University Press. This book was released on 2019 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the intricate details of muscle contraction has a long-standing tradition in biophysical research. X-ray diffraction has been one of the key techniques to resolve the nanometer-sized molecular machinery involved in force generation. Modern, powerful X-ray sources now provide billions of X-ray photons in time intervals as short as microseconds, enabling fast time-resolved experiments that shed further light on the complex relationship between muscle structure and function. Another approach harnesses this power by repeatedly performing such an experiment at different locations in a sample. With millions of repeated exposures in a single experiment, X-ray diffraction can seamlessly be turned into a raster imaging method, neatly combining real- and reciprocal space information. This thesis has focused on the advancement of this scanning scheme and its application to soft biological tissue, in particular muscle tissue. Special emphasis was placed on the extraction of meaningful, quantitative structural parameters such as the interfilament distance of the actomyosin lattice in cardiac muscle. The method was further adapted to image biological samples on a range of scales, from isolated cells to millimeter-sized tissue sections. Due to the ‘photon-hungry’ nature of the technique, its full potential is often exploited in combination with full-field imaging techniques. From the vast set of microscopic tools available, coherent full-field X-ray imaging has proven to be particularly useful. This multimodal approach allows to correlate two- and three-dimensional images of cells and tissue with diffraction maps of structure parameters. With the set of tools developed in this thesis, scanning X-ray diffraction can now be efficiently used for the structural analysis of soft biological tissues with overarching future applications in biophysical and biomedical research.