EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hamiltonian Reduction by Stages

Download or read book Hamiltonian Reduction by Stages written by Jerrold E. Marsden and published by Springer. This book was released on 2007-06-05 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. It gives special emphasis to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. The volume also provides ample background theory on symplectic reduction and cotangent bundle reduction.

Book Momentum Maps and Hamiltonian Reduction

Download or read book Momentum Maps and Hamiltonian Reduction written by Juan-Pablo Ortega and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Winner of the Ferran Sunyer i Balaguer Prize in 2000. * Reviews the necessary prerequisites, beginning with an introduction to Lie symmetries on Poisson and symplectic manifolds. * Currently in classroom use in Europe. * Can serve as a resource for graduate courses and seminars in Hamiltonian mechanics and symmetry, symplectic and Poisson geometry, Lie theory, mathematical physics, and as a comprehensive reference resource for researchers.

Book Hamiltonian Reduction by Stages

Download or read book Hamiltonian Reduction by Stages written by Jerrold E. Marsden and published by . This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume readers will find for the first time a detailed account of the theory of symplectic reduction by stages, along with numerous illustrations of the theory. Special emphasis is given to group extensions, including a detailed discussion of the Euclidean group, the oscillator group, the Bott-Virasoro group and other groups of matrices. Ample background theory on symplectic reduction and cotangent bundle reduction in particular is provided. Novel features of the book are the inclusion of a systematic treatment of the cotangent bundle case, including the identification of cocycles with magnetic terms, as well as the general theory of singular reduction by stages.

Book Lagrangian Reduction by Stages

Download or read book Lagrangian Reduction by Stages written by Hernán Cendra and published by American Mathematical Soc.. This book was released on 2001 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This booklet studies the geometry of the reduction of Lagrangian systems with symmetry in a way that allows the reduction process to be repeated; that is, it develops a context for Lagrangian reduction by stages. The Lagrangian reduction procedure focuses on the geometry of variational structures and how to reduce them to quotient spaces under group actions. This philosophy is well known for the classical cases, such as Routh reduction for systems with cyclic variables (where the symmetry group is Abelian) and Euler-Poincare reduction (for the case in which the configuration space is a Lie group) as well as Euler-Poincare reduction for semidirect products.

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds

Download or read book Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds written by Taeyoung Lee and published by Springer. This book was released on 2017-08-14 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.

Book Geometric Mechanics   Part I  Dynamics And Symmetry  2nd Edition

Download or read book Geometric Mechanics Part I Dynamics And Symmetry 2nd Edition written by Darryl D Holm and published by World Scientific Publishing Company. This book was released on 2011-07-13 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie-Poisson Hamiltonian formulations and momentum maps in physical applications.The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications./a

Book Mathematics of Complexity and Dynamical Systems

Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Book Hamiltonian Group Actions and Equivariant Cohomology

Download or read book Hamiltonian Group Actions and Equivariant Cohomology written by Shubham Dwivedi and published by Springer Nature. This book was released on 2019-09-23 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry.

Book Geometric Mechanics and Symmetry

Download or read book Geometric Mechanics and Symmetry written by James Montaldi and published by Cambridge University Press. This book was released on 2005-05-05 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The lectures in this 2005 book are intended to bring young researchers to the current frontier of knowledge in geometrical mechanics and dynamical systems.

Book Symplectic Reduction by Stages

Download or read book Symplectic Reduction by Stages written by Matthew Perlmutter and published by . This book was released on 1999 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on Mechanics

    Book Details:
  • Author : Jerrold E. Marsden
  • Publisher : Cambridge University Press
  • Release : 1992-04-30
  • ISBN : 9780521428446
  • Pages : 272 pages

Download or read book Lectures on Mechanics written by Jerrold E. Marsden and published by Cambridge University Press. This book was released on 1992-04-30 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the 1991 LMS Invited Lectures given by Professor Marsden, this book discusses and applies symmetry methods to such areas as bifurcations and chaos in mechanical systems.

Book Geometry of Nonholonomically Constrained Systems

Download or read book Geometry of Nonholonomically Constrained Systems written by Richard H. Cushman and published by World Scientific. This book was released on 2010 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a modern differential geometric treatment of linearly nonholonomically constrained systems. It discusses in detail what is meant by symmetry of such a system and gives a general theory of how to reduce such a symmetry using the concept of a differential space and the almost Poisson bracket structure of its algebra of smooth functions. The above theory is applied to the concrete example of Carathodory's sleigh and the convex rolling rigid body. The qualitative behavior of the motion of the rolling disk is treated exhaustively and in detail. In particular, it classifies all motions of the disk, including those where the disk falls flat and those where it nearly falls flat. The geometric techniques described in this book for symmetry reduction have not appeared in any book before. Nor has the detailed description of the motion of the rolling disk. In this respect, the authors are trail-blazers in their respective fields.

Book Lie Theory and Its Applications in Physics

Download or read book Lie Theory and Its Applications in Physics written by Vladimir Dobrev and published by Springer. This book was released on 2015-01-26 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear PDE, special functions, and others. Furthermore, the necessary tools from functional analysis and number theory are included. This is a big interdisciplinary and interrelated field. Samples of these fresh trends are presented in this volume, based on contributions from the Workshop "Lie Theory and Its Applications in Physics" held near Varna (Bulgaria) in June 2013. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists and researchers in the field of Lie Theory.

Book Foundations of Mechanics

Download or read book Foundations of Mechanics written by Ralph Abraham and published by American Mathematical Soc.. This book was released on 2008 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reference on symplectic geometry, analytical mechanics and symplectic methods in mathematical physics. It offers a treatment of geometric mechanics. It is also suitable as a textbook for the foundations of differentiable and Hamiltonian dynamics.

Book Dynamically Coupled Rigid Body Fluid Flow Systems

Download or read book Dynamically Coupled Rigid Body Fluid Flow Systems written by Banavara N. Shashikanth and published by Springer Nature. This book was released on 2021-10-28 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified study of dynamically coupled systems involving a rigid body and an ideal fluid flow from the perspective of Lagrangian and Hamiltonian mechanics. It compiles theoretical investigations on the topic of dynamically coupled systems using a framework grounded in Kirchhoff’s equations. The text achieves a balance between geometric mechanics, or the modern theories of reduction of Lagrangian and Hamiltonian systems, and classical fluid mechanics, with a special focus on the applications of these principles. Following an introduction to Kirchhoff’s equations of motion, the book discusses several extensions of Kirchhoff’s work, particularly related to vortices. It addresses the equations of motions of these systems and their Lagrangian and Hamiltonian formulations. The book is suitable to mathematicians, physicists and engineers with a background in Lagrangian and Hamiltonian mechanics and theoretical fluid mechanics. It includes a brief introductory overview of geometric mechanics in the appendix.

Book Poisson Geometry in Mathematics and Physics

Download or read book Poisson Geometry in Mathematics and Physics written by Giuseppe Dito and published by American Mathematical Soc.. This book was released on 2008 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.