EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Halide Perovskite Lasers

    Book Details:
  • Author : Yong Kang Eugene Tay
  • Publisher : Springer
  • Release : 2022-05-10
  • ISBN : 9789811679728
  • Pages : 126 pages

Download or read book Halide Perovskite Lasers written by Yong Kang Eugene Tay and published by Springer. This book was released on 2022-05-10 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the rapidly emerging field of solution-processed halide perovskite lasers. These amazing materials not only possess exceptional photovoltaic properties, but are also outstanding optical gain media. Halide perovskites are the latest member of solution-processed optical gain media, joining organics and traditional semiconductor colloidal quantum dots. Amplified spontaneous emission and lasing have been demonstrated in various halide perovskite configurations and nanostructures with wavelengths tunable over the visible and infrared wavelengths (400–1000 nm). This book provides comprehensive information on perovskite lasing, starting with some fundamentals of lasers and their basic operating principles. Unambiguous methods for identifying lasing light emission are presented, while the basic optoelectronic properties of perovskite materials are also discussed, with an emphasis on their photophysics, using ultrafast optical spectroscopy techniques. The viability of perovskites as a gain media within a suitable resonator, as well as the characterization methods for optical gain, are highlighted. The book closes with a discussion on the remaining challenges (such as electrical driven lasing and material stabilities) that need to be tackled, and the future of this new family of lasers.

Book Multifunctional Organic   Inorganic Halide Perovskite

Download or read book Multifunctional Organic Inorganic Halide Perovskite written by Nam-Gyu Park and published by CRC Press. This book was released on 2022-03-10 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.

Book Halide Perovskite Lasers

    Book Details:
  • Author : Yong Kang Eugene Tay
  • Publisher : Springer Nature
  • Release : 2022-05-09
  • ISBN : 9811679738
  • Pages : 132 pages

Download or read book Halide Perovskite Lasers written by Yong Kang Eugene Tay and published by Springer Nature. This book was released on 2022-05-09 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the rapidly emerging field of solution-processed halide perovskite lasers. These amazing materials not only possess exceptional photovoltaic properties, but are also outstanding optical gain media. Halide perovskites are the latest member of solution-processed optical gain media, joining organics and traditional semiconductor colloidal quantum dots. Amplified spontaneous emission and lasing have been demonstrated in various halide perovskite configurations and nanostructures with wavelengths tunable over the visible and infrared wavelengths (400–1000 nm). This book provides comprehensive information on perovskite lasing, starting with some fundamentals of lasers and their basic operating principles. Unambiguous methods for identifying lasing light emission are presented, while the basic optoelectronic properties of perovskite materials are also discussed, with an emphasis on their photophysics, using ultrafast optical spectroscopy techniques. The viability of perovskites as a gain media within a suitable resonator, as well as the characterization methods for optical gain, are highlighted. The book closes with a discussion on the remaining challenges (such as electrical driven lasing and material stabilities) that need to be tackled, and the future of this new family of lasers.

Book Halide Perovskite Semiconductors

Download or read book Halide Perovskite Semiconductors written by Yuanyuan Zhou and published by John Wiley & Sons. This book was released on 2023-12-22 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Halide Perovskite Semiconductors Enables readers to acquire a systematic and in-depth understanding of various fundamental aspects of halide perovskite semiconductors Halide Perovskite Semiconductors: Structures, Characterization, Properties, and Phenomena covers the most fundamental topics with regards to halide perovskites, including but not limited to crystal/defect theory, crystal chemistry, heterogeneity, grain boundaries, single-crystals/thin-films/nanocrystals synthesis, photophysics, solid-state ionics, spin physics, chemical (in)stability, carrier dynamics, hot carriers, surface and interfaces, lower-dimensional structures, and structural/functional characterizations. Included discussions on the fundamentals of halide perovskites aim to expand the basic science fields of physics, chemistry, and materials science. Edited by two highly qualified researchers, Halide Perovskite Semiconductors includes specific information on: Crystal/defect theory of halide perovskites, crystal chemistry of halide perovskites, and processing and microstructures of halide perovskites Single-crystals of halide perovskites, nanocrystals of halide perovskites, low-dimensional perovskite crystals, and nanoscale heterogeneity of halide perovskites Carrier mobilities and dynamics in halide perovskites, light emission of halide perovskites, photophysics and ultrafast spectroscopy of halide perovskites Hot carriers in halide perovskites, correlating photophysics with microstructures in halide perovskites, chemical stability of halide perovskites, and solid-state ionics of halide perovskites Readers can find solutions to technological issues and challenges based on the fundamental knowledge gained from this book. As such, Halide Perovskite Semiconductors is an essential in-depth treatment of the subject, ideal for solid-state chemists, materials scientists, physical chemists, inorganic chemists, physicists, and semiconductor physicists.

Book Halide Perovskites

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Book Metal Halide Perovskite Crystals  Growth Techniques  Properties and Emerging Applications

Download or read book Metal Halide Perovskite Crystals Growth Techniques Properties and Emerging Applications written by Wei Zhang and published by MDPI. This book was released on 2019-01-31 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Metal Halide Perovskite Crystals: Growth Techniques, Properties and Emerging Applications" that was published in Crystals

Book Metal Halide Perovskites for Generation  Manipulation and Detection of Light

Download or read book Metal Halide Perovskites for Generation Manipulation and Detection of Light written by Juan P. Martínez-Pastor and published by Elsevier. This book was released on 2023-07-20 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Halide Perovskites for Generation, Manipulation and Detection of Light covers the current state and future prospects of lead halide perovskite photonics and photon sources, both from an academic and industrial point-of-view. Advances in metal halide perovskite photon sources (lasers) based on thin films, microcrystals and nanocrystals are comprehensively reviewed, with leading experts contributing current advances in theory, fundamental concepts, fabrication techniques, experiments and other important research innovations. This book is suitable for graduate students, researchers, scientists and engineers in academia and R&D in industry working in the disciplines of materials science and engineering. - Includes comprehensive reviews from academic and industrial perspectives of current trends in the field of metal halide perovskite for photonics - Provides an up-to-date look at the most recent and upcoming applications in metal halide perovskite photonics, such as; photodetectors, lighting, lasing, nonlinear photonics and quantum technologies - Discusses future prospective trends and envisioned applications of metal halide perovskites, from near-UV to near-IR photonics

Book Perovskite Solar Cells

Download or read book Perovskite Solar Cells written by Kunwu Fu and published by CRC Press. This book was released on 2019-03-19 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing use of metal halide perovskites as light harvesters has stunned the photovoltaic community. The book, Perovskite Solar Cells: Technology and Practices, covers the basics and provides up-to-date research in the field of perovskite photovoltaics—a fast trending branch of the thin film photovoltaic generation. This comprehensive handbook provides a broad and overall picture of perovskite solar cells (PSCs), starting with the history of development and revolution of PSCs. The authors then delve into electron-transporting materials, hole-transporting materials, and lead-free alternatives. An important chapter on tandem solar cells is also included. The chapters discuss how different layers in PSCs are fabricated and function and how their roles are as important as the perovskite layer itself. It explores what has been done and what can probably be done to further improve the performance of this device.

Book Metal Halide Perovskite Light Sources for On chip Applications

Download or read book Metal Halide Perovskite Light Sources for On chip Applications written by Jiyoung Moon and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal halide perovskites have attracted much attention as economical gain materials for light emitting diodes (LEDs) and on-chip lasers in photonic integrated circuits. However, the potential commercialization of these perovskite light sources has been hindered by the lack of a systematic approach to overcome perovskite instability, and in the case of lasers, the challenge to directly pattern perovskites into resonators. The goals for this dissertation are to establish systematic approaches to stabilize perovskites, and to demonstrate economical perovskite lasers. To understand the importance of the abovementioned goals, the requirements and fundamentals of on-chip light sources are first discussed. Next, a detailed study of the degradation mechanisms in perovskites is presented. Perovskites degrade by exposure to high temperature, ambient atmosphere, polar solvents (e.g., water), and high photo-/e-beam energy which are used in conventional lithography (e.g., photo-/e-beam lithography). Because of the instability of perovskites, we face not only the short shelf life of perovskite devices, but also the difficulty in the direct patterning of perovskites into an optical cavity. In order to improve the shelf life of perovskite devices, a practical encapsulation method as well as its comparison to other common encapsulation methods are presented. To create laser cavities, a novel direct-patterning method of perovskite 0́4 nanoimprint lithography 0́4 is presented. We show that nanoimprint lithography improves the quality of perovskites and explain the mechanism behind the positive effects of nanoimprint lithography. With a synergistic approach which includes a practical encapsulation method, an efficient patterning method that also improves material morphology, and a high-quality cavity design, the first demonstration of quasi-CW lasing from directly patterned perovskites is shown. Finally, future directions for improving the efficiency of optically pumped perovskite lasers and the realization of electrically pumped perovskite lasers are discussed.

Book Perovskite Photovoltaics and Optoelectronics

Download or read book Perovskite Photovoltaics and Optoelectronics written by Tsutomu Miyasaka and published by John Wiley & Sons. This book was released on 2022-03-21 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.

Book Self assembly of Lead halide perovskite Laser Particles

Download or read book Self assembly of Lead halide perovskite Laser Particles written by Sangyeon Cho (Ph. D.) and published by . This book was released on 2019 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: As profiling the molecular states of cellular subpopulations has become increasingly important to understand complex systems in biology and medicine, considerable efforts are being made to develop multiplexed techniques. While current fluorescent probes play indispensable roles, their broad emission spectra (about 30-100 nm) limit multiplexing capability. Recently, optical probes emitting narrowband laser spectra (about 0.1-1 nm), called 'laser particles', has drawn attention. Semiconductor microdisk lasers fabricated by top-down lithography have shown potential for massive multiplexing of thousands to millions of samples. In the thesis, I investigated lead halide perovskites (LHP) as a novel material for scalable production of laser particles in a lab flask. I discovered a sonochemical method to produce a large quantity (10 billions/L) of high-quality LHP micro- and sub-micron particles in a polar solvent within minutes. This method enabled me to coat the surface of individual CsPbBr3 laser particles using poly-catecholamine and thereby to improve optical properties and material stability against moisture. With CsPbBr3 microparticles coated with nano-scatterers, I realized disordered lasing based on Anderson localization. In addition, by incorporating plasmonic materials, I demonstrated plasmonic-lasing particles as small as 580 nm. This work paves the way for highly multiplexable laser particles for biomedical applications.

Book Multifunctional Organic   Inorganic Halide Perovskite

Download or read book Multifunctional Organic Inorganic Halide Perovskite written by Nam-Gyu Park and published by CRC Press. This book was released on 2022-03-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.

Book Low Dimensional Halide Perovskites

Download or read book Low Dimensional Halide Perovskites written by Yiqiang Zhan and published by Elsevier. This book was released on 2022-11-29 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-Dimensional Halide Perovskites: Structure, Properties and Applications provides an in-depth look at halide perovskite materials and their applications. Chapters cover history, fundamentals, physiochemical and optoelectronic properties, synthesis and characterization of traditional and Pb-free halide perovskites. The book concludes with sections describing the different applications of halide perovskites for solar cells, light-emitting diodes and photo detectors, as well as the challenges faced in the industrialization of halide perovskite-based devices and forward-thinking prospects for further deployment. - Discusses the applications of halide perovskites according to their dimensionality - Includes a look at current challenges for the commercialization of halide perovskites, while also previewing some possible solutions - Presents alternative environmentally-friendly materials that can used to replace the current toxic materials-based halide perovskites

Book Perovskite Quantum Dots

Download or read book Perovskite Quantum Dots written by Ye Zhou and published by Springer Nature. This book was released on 2020-08-27 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.

Book Nanomaterials and Supramolecular Structures

Download or read book Nanomaterials and Supramolecular Structures written by Anatoliy Petrovych Shpak and published by Springer Science & Business Media. This book was released on 2009-10-22 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text features experimental investigations which use a variety of modern methods and theoretical modeling of surface structures and physicochemical processes which occur at solid surfaces. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications is intended for specialists experienced in the fields of Nanochemistry, Nanophysics, Surface Chemistry (and Physics), synthesis of new nanostructural functional materials and their practical applications. It will also prove useful to students, post-graduates, researchers, and lecturers.

Book Quantum dot Based Light emitting Diodes

Download or read book Quantum dot Based Light emitting Diodes written by Morteza Sasani Ghamsari and published by BoD – Books on Demand. This book was released on 2017-10-25 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum dot-based light emitting diodes were assigned to bringing together the latest and most important progresses in light emitting diode (LED) technologies. In addition, they were dedicated to gain the perspective of LED technology for all of its advancements and innovations due to the employment of semiconductor nanocrystals. Highly selective, the primary aim was to provide a visual source for high-urgency work that will define the future directions relating to the organic light emitting diode (OLED), with the expectation for lasting scientific and technological impact. The editor hopes that the chapters verify the realization of the mentioned aims that have been considered for editing of this book. Due to the rapidly growing OLED technology, we wish this book to be useful for any progress that can be achieved in future.

Book Halide Perovskite Light emitting Devices  Ionic Doping and Nanostructuring in Single Layer LEC and Laser

Download or read book Halide Perovskite Light emitting Devices Ionic Doping and Nanostructuring in Single Layer LEC and Laser written by Masoud Alahbakhshi and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal halide perovskites, as a new type of hybrid semiconductors, have demonstrated promising optoelectronic properties for state-of-the-art and emerging photonic technologies such as pure color light-emitting diodes, cost-effective nano-lasers, and efficient photovoltaic devices. Owing to highly tunable emission wavelengths, high absorption coefficient, high exciton binding energy, narrow emission linewidth, and less expensive fabrication methods, perovskite materials are excellent choices for the next generation of optoelectronic applications. In this dissertation, we mainly focus on introducing and understanding the physics and processing of the perovskite lightemitting devices regarding their dynamic behavior associated with ionic doping and nanopatterning effects in perovskite materials. We begin by investigating a novel and facile approach to overcome some important limitations of Perovskite Light-Emitting Electrochemical Cells (PeLECs) such as intrinsic ion motion degradation, low brightness, and short operational lifetime. In this method, we leverage the advantages of new nanocomposite with an electrolyte polymer along with a lithium salt additive (LiPF6) incorporated into the CsPbBr3 perovskite structure in order to passivate and suppress the traps, defects, and pin-holes in perovskite thin films aiming to improve the morphology and achieve high-performance single layer PeLEC for green emission. By implementing the material characterization techniques, we scrutinize the optimization process for lithium salt additive and demonstrate the advantages of LiPF6 additive including high photoluminescence quantum yield (PLQY), and stable photoluminescence (PL) dynamics, electroluminescence (EL) stability, low hysteresis, and high efficiency of devices. Inspired by the successes of ionic additives in these types of PeLECs, we further investigate the operational stability of devices and reach 100 hours of operational lifetime which is a 5.6-fold improvement over devices with no LiPF6 additive. We further develop our research by utilizing a new synthesized ionic iridium complex to build a HostGuest system in PeLEC structure in order to effectively tune the color emission, improve the morphology and consequently increase the efficiency of PeLECs for future display applications. In the next part of this dissertation, we provide a unique method to construct a multilayer blue Perovskite Light-Emitting Diode (PeLED) by utilizing the electron and hole transport layers as well as Quasi-2D perovskite composition. We successfully show that implementing two long and small ligands into the 3D perovskite precursor can beneficially form both small and large n phases perovskite layers, for the selective energy transfer process, and eventually provide an extremely efficient blue PeLED device. The maximum 10% EQE, maximum luminance 5500 cd m-2 , and 170 min half lifetime (T50) operational stability have been demonstrated. In the last section, we present the novel nanoimprint lithography method in order to perform direct nanopatterning on halide perovskite thin films to create laser cavities. With a meticulous approach that includes a practical encapsulation method, we have exhibited the first demonstration of quasi-CW lasing from directly patterned perovskites with a high-quality cavity design.