Download or read book Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites written by Sabu Thomas and published by Springer Nature. This book was released on 2022-10-27 with total page 1278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive reference work satisfies the need for in-depth and multidisciplinary coverage of the current state of the art of magnetic hybrid nanoalloys (MHNAs) and their polymer and ceramic nanocomposites. MHNAs represent one of the most challenging research areas in modern science and technology. These materials are stiff and strong with remarkable electronic, mechanical, electrical, thermal and biocompatible properties, and a high potential for multifunctional applications ranging from industry to medicine. The peer-reviewed literature is already extensive, witnessing rapid progress in experimental and theoretical studies on fundamental properties as well as various advanced applications. Part 1 covers theory, modelling, and synthesis (growth and alloying mechanisms) of MHNAs. Formation mechanisms of magneto-electric multiferroic materials, magnetic carbon nanotube (CNTs), and perovskite materials, which are a novel class of next-generation multifunctional nanomaterials, are discussed. The second part focuses on characterization techniques for electrical and dielectrical, rheological, biocompatibility, and other properties, as well as applications in the industrial, agricultural, environmental, and biomedical sectors. Finally, life cycle assessment is considered as essential to the development of nanomaterials and nanoproducts from MHNAs. Advanced undergraduate and graduate students, researchers, and other professionals in the fields of materials science and engineering, polymer science, surface science, bioengineering, and chemical engineering will find comprehensive and authoritative information for solving fundamental and applied problems in the characterization and use of these multifunctional nanomaterials.
Download or read book Ferroelectrics written by Mickaël Lallart and published by BoD – Books on Demand. This book was released on 2011-08-24 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferroelectric materials have been and still are widely used in many applications, that have moved from sonar towards breakthrough technologies such as memories or optical devices. This book is a part of a four volume collection (covering material aspects, physical effects, characterization and modeling, and applications) and focuses on ways to obtain high-quality materials exhibiting large ferroelectric activity. The book covers the aspect of material synthesis and growth, doping and composites, lead-free devices, and thin film synthesis. The aim of this book is to provide an up-to-date review of recent scientific findings and recent advances in the field of ferroelectric materials, allowing a deep understanding of the material aspects of ferroelectricity.
Download or read book Multiferroics written by Andres Cano and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-21 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiferroics, materials with a coexistence of magnetic and ferroelectric order, provide an efficient route for the control of magnetism by electric fields. The authors cover multiferroic thin-film heterostructures, device architectures and domain/interface effects. They critically discuss achievements as well as limitations and assess opportunities for future applications.
Download or read book Ferroic Functional Materials written by Jörg Schröder and published by Springer. This book was released on 2017-11-23 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers experiments and theory in the fields of ferroelectrics, ferromagnets, ferroelastics, and multiferroics. Topics include experimental preparation and characterization of magnetoelectric multiferroics, the modeling of ferroelectric and ferromagnetic materials, the formation of ferroic microstructures and their continuum-mechanical modeling, computational homogenization, and the algorithmic treatment in the framework of numerical solution strategies.
Download or read book Integrated Multiferroic Heterostructures and Applications written by Ming Liu and published by John Wiley & Sons. This book was released on 2019-08-05 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by well-known experts in the field, this first systematic overview of multiferroic heterostructures summarizes the latest developments, first presenting the fundamental mechanisms, including multiferroic materials synthesis, structures and mechanisms, before going on to look at device applications. The resulting text offers insight and understanding for scientists and students new to this area.
Download or read book Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials VII Volume 34 Issue 8 written by Tatsuki Ohji and published by John Wiley & Sons. This book was released on 2013-12-02 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic Engineering and Science Proceedings Volume 34, Issue 8 - Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials VII A collection of 20 papers from The American Ceramic Society's 37th International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 27-February 1, 2013. This issue includes papers presented in the 7th International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials and Systems (Symposium 8).
Download or read book Epitaxial Growth of Complex Metal Oxides written by Gertjan Koster and published by Woodhead Publishing. This book was released on 2022-04-22 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites. - Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques - Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry - Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications
Download or read book Electric Field Control of Magnetization and Electronic Transport in Ferromagnetic Ferroelectric Heterostructures written by Sen Zhang and published by Springer Science & Business Media. This book was released on 2014-04-10 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly focuses on the investigation of the electric-field control of magnetism and spin-dependent transportation based on a Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) multiferroic heterostructure. Methods of characterization and analysis of the multiferroic properties with in situ electric fields are induced to detect the direct magnetoelectric (ME) coupling. A switchable and non-volatile electric field control of magnetization in CoFeB/PMN-PT(001) structures is observed at room temperature, and the mechanism of direct coupling between the ferroelectric domain and ferromagnetic film due to the combined action of 109° ferroelastic domain switching in PMN-PT and the absence of magnetocrystalline anisotropy in CoFeB is demonstrated. Moreover, the electric-field control of giant magnetoresistance is achieved in a CoFeB-based spin valve deposited on top of (011) oriented PMN-PT, which offers an avenue for implementing electric-writing and magnetic-reading random access memory at room temperature. Readers will learn the basic properties of multiferroic materials, many useful techniques related to characterizing multiferroics and the interesting ME effect in CoFeB/PMN-PT structures, which is significant for applications.
Download or read book Nanoscale Ferroelectrics and Multiferroics written by Miguel Alguero and published by John Wiley & Sons. This book was released on 2016-03-21 with total page 984 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, the text covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. This set is developed from the high level European scientific knowledge platform built within the COST (European Cooperation in Science and Technology) Action on Single and multiphase ferroics and multiferroics with restricted geometries (SIMUFER, ref. MP0904). Chapter contributors have been carefully selected, and have all made major contributions to knowledge of the respective topics, and overall, they are among most respected scientists in the field.
Download or read book Chemical Technology and Informatics in Chemistry with Applications written by Alexander V. Vakhrushev and published by CRC Press. This book was released on 2019-01-15 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the huge breadth and diversity in research and the application of industrial and engineering chemistry and cheminformatics. The book presents cutting-edge research developments and new insights that emphasize the vibrancy of industrial and engineering chemistry and cheminformatics today. The first section of the book focuses on new insights in engineering chemistry while the second part looks at the promising future and novel approaches in chemical informatics, which has vast implications for industrial and pharmaceutical applications. Several chapters examine various industrial processes for emerging materials and determine practical use under a wide range of conditions, helping to establish what is needed to produce a new generation of materials.
Download or read book PEROVSKITES AND OTHER FRAMEWORK STRUCTURE CRYSTALLINE MATERIALS written by and published by Collaborating Academics. This book was released on 2021-01-14 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskites are among the most famous materials due to their exceptional properties: they present nearly all existing types of interesting properties, in particular as ferroics or multiferroics, they may be insulators, (super)conductors, or semiconductors, magnetoresistant, they are used in numerous devices, they present hundreds of variants and different crystalline phases and phase transitions, and recently appeared as probably the most promising materials for photovoltaics. With a crystal structure characterized by octahedra that share their corners, these materials belong to the wider category of « Framework Structure (FWS) materials » the structure of which is based on units (octahedra, tetrahedra, …) that share some of their corners (or edges) with their neighbours. This particular feature of FWS materials confers to them unique properties. This review volume is constituted of 26 chapters on different aspects, and is divided in two parts, « Fundamental aspects and general properties », and « Elaborated materials and applied properties ». Its main purpose is to attempt to identify the properties common to all members of the vast family of FWS materials, and understand their differences. Besides perovskites, derived compounds as 2D perovskites, Dion-Jacobson, Ruddlesden-Popper, Aurivillius, tungsten-bronzes, and others, are presented, and their preparation and/or properties as single crystals, ceramics, thin films, multilayers, nanomaterials, nanofibers, nanorods, etc, are discussed. We focus on new trends and important recent developments by leaving somewhat aside more classical aspects which can be easily found in older textbooks or review articles. Among most recent applications, this volume focuses on applications related with interactions with other molecules, on photovoltaics, and on memories, with a special attention to perovskite solar cells that have certainly attracted the most attention of researchers in recent years, opening extremely promising routes in photovoltaics. In conclusion, this book presents a collection of texts elucidating various aspects of the relation between structural organization (including dynamical aspects) and singular properties of framework crystals; it proposes a reasonable balance between experimental and theoretical results, and between fundamental aspects and applied properties. This volume can be approached on several levels (each chapter initially assumes that the reader is not a specialist in the subject, and is presented in a pedagogical way) : it is accessible to master or doctoral students, as well as to researchers who want to have informations on recent developments, who will find excellent detailed introductions up to hotsubjects. It may also be used by undergraduate students who should approach given subjects. The volume contains 800 pages written by about 70 authors from different countries, it has an index, and is completed by numerous figures to illustrate the text.
Download or read book Multiscale Materials Modeling written by Siegfried Schmauder and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-08-22 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT ・ finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide・zinc oxide interaction
Download or read book Multifunctional Oxide Heterostructures written by Evgeny Y. Tsymbal and published by OUP Oxford. This book was released on 2012-08-30 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.
Download or read book Magnetoelectric Composites written by Mirza I. Bichurin and published by CRC Press. This book was released on 2019-02-22 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to modeling and application of magnetoelectric (ME) effects in layered and bulk composites based on magnetostrictive and piezoelectric materials. Currently, numerous theoretical and experimental studies on ME composites are available but few on the development and research of instruments based on them. So far, only investigation of ME magnetic field sensors has been cited in the existing literature. However, these studies have finally resulted in the creation of low-frequency ME magnetic field sensors with parameters substantially exceeding the characteristics of Hall sensors. The book presents the authors’ many years of experience gained in ME composites and through creation of device models based on their studies. It describes low-frequency ME devices, such as current and position sensors and energy harvesters, and microwave ME devices, such as antennas, attenuators, filters, gyrators, and phase shifters.
Download or read book Multiscale Modeling of Heterogeneous Structures written by Jurica Sorić and published by Springer. This book was released on 2017-11-30 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of multiscale approaches and homogenization procedures as well as damage evaluation and crack initiation, and addresses recent advances in the analysis and discretization of heterogeneous materials. It also highlights the state of the art in this research area with respect to different computational methods, software development and applications to engineering structures. The first part focuses on defects in composite materials including their numerical and experimental investigations; elastic as well as elastoplastic constitutive models are considered, where the modeling has been performed at macro- and micro levels. The second part is devoted to novel computational schemes applied on different scales and discusses the validation of numerical results. The third part discusses gradient enhanced modeling, in particular quasi-brittle and ductile damage, using the gradient enhanced approach. The final part addresses thermoplasticity, solid-liquid mixtures and ferroelectric models. The contents are based on the international workshop “Multiscale Modeling of Heterogeneous Structures” (MUMO 2016), held in Dubrovnik, Croatia in September 2016.
Download or read book Pulsed Laser Deposition of Thin Films written by Douglas B. Chrisey and published by Wiley-Interscience. This book was released on 1994-06-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of what is required to set up and begin research in this newly developing technology and understand the basics of the process. Internationally recognized experts in their fields cover such fundamentals as history, theory, film characteristics, surface modification, laser technology, materials and applications including excellent reviews regarding the entire areas of semiconductor buffer layers, thin-film ferroelectrics and ferrites along with the work involving films deposited by PLD.
Download or read book Thin Film Metal Oxides written by Shriram Ramanathan and published by Springer Science & Business Media. This book was released on 2009-12-03 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.