EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Growing Graphene on Semiconductors

Download or read book Growing Graphene on Semiconductors written by Nunzio Motta and published by CRC Press. This book was released on 2017-09-08 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene, the wonder material of the 21st century, is expected to play an important role in future nanoelectronic applications, but the only way to achieve this goal is to grow graphene directly on a semiconductor, integrating it in the chain for the production of electronic circuits and devices. This book summarizes the latest achievements in this field, with particular attention to the graphitization of SiC. Through high-temperature annealing in a controlled environment, it is possible to decompose the topmost SiC layers, obtaining quasi-ideal graphene by Si sublimation with record electronic mobilities, while selective growth on patterned structures makes possible the opening of a gap by quantum confinement. The book starts with a review chapter on the significance and challenges of graphene growth on semiconductors, followed by three chapters dedicated to an up-to-date analysis of the synthesis of graphene in ultrahigh vacuum, and concludes with two chapters discussing possible ways of tailoring the electronic band structure of epitaxial graphene by atomic intercalation and of creating a gap by the growth of templated graphene nanostructures.

Book Growing Graphene on Semiconductors

Download or read book Growing Graphene on Semiconductors written by Nunzio Motta and published by CRC Press. This book was released on 2017-09-08 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene, the wonder material of the 21st century, is expected to play an important role in future nanoelectronic applications, but the only way to achieve this goal is to grow graphene directly on a semiconductor, integrating it in the chain for the production of electronic circuits and devices. This book summarizes the latest achievements in this field, with particular attention to the graphitization of SiC. Through high-temperature annealing in a controlled environment, it is possible to decompose the topmost SiC layers, obtaining quasi-ideal graphene by Si sublimation with record electronic mobilities, while selective growth on patterned structures makes possible the opening of a gap by quantum confinement. The book starts with a review chapter on the significance and challenges of graphene growth on semiconductors, followed by three chapters dedicated to an up-to-date analysis of the synthesis of graphene in ultrahigh vacuum, and concludes with two chapters discussing possible ways of tailoring the electronic band structure of epitaxial graphene by atomic intercalation and of creating a gap by the growth of templated graphene nanostructures.

Book Graphene Nanoelectronics

Download or read book Graphene Nanoelectronics written by Raghu Murali and published by Springer Science & Business Media. This book was released on 2012-03-09 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.

Book Graphene and VLSI Interconnects

Download or read book Graphene and VLSI Interconnects written by Cher-Ming Tan and published by CRC Press. This book was released on 2021-11-24 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Copper (Cu) has been used as an interconnection material in the semiconductor industry for years owing to its best balance of conductivity and performance. However, it is running out of steam as it is approaching its limits with respect to electrical performance and reliability. Graphene is a non-metal material, but it can help to improve electromigration (EM) performance of Cu because of its excellent properties. Combining graphene with Cu for very large-scale integration (VLSI) interconnects can be a viable solution. The incorporation of graphene into Cu allows the present Cu fabrication back-end process to remain unaltered, except for the small step of “inserting” graphene into Cu. Therefore, it has a great potential to revolutionize the VLSI integrated circuit (VLSI-IC) industry and appeal for further advancement of the semiconductor industry. This book is a compilation of comprehensive studies done on the properties of graphene and its synthesis methods suitable for applications of VLSI interconnects. It introduces the development of a new method to synthesize graphene, wherein it not only discusses the method to grow graphene over Cu but also allows the reader to know how to optimize graphene growth, using statistical design of experiments (DoE), on Cu interconnects in order to obtain good-quality and reliable interconnects. It provides a basic understanding of graphene–Cu interaction mechanism and evaluates the electrical and EM performance of graphenated Cu interconnects.

Book Semiconductor Nanowires I  Growth and Theory

Download or read book Semiconductor Nanowires I Growth and Theory written by and published by Academic Press. This book was released on 2015-11-26 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Nanowires: Part A, Number 93 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. Contains comments from leading contributors in the field semiconductor nanowires Provides reviews of the most important recent literature Presents a broad view, including an examination of semiconductor nanowires Comprises up to date advancements in the technological development of nanowire devices and systems, and is comprehensive enough to be used as a reference book on nanowires as well as a graduate student text book

Book Physics of Graphene

    Book Details:
  • Author : Hideo Aoki
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-17
  • ISBN : 331902633X
  • Pages : 356 pages

Download or read book Physics of Graphene written by Hideo Aoki and published by Springer Science & Business Media. This book was released on 2013-12-17 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a state of the art report of the knowledge accumulated in graphene research. The fascination with graphene has been growing very rapidly in recent years and the physics of graphene is now becoming one of the most interesting as well as the most fast-moving topics in condensed-matter physics. The Nobel prize in physics awarded in 2010 has given a tremendous impetus to this topic. The horizon of the physics of graphene is ever becoming wider, where physical concepts go hand in hand with advances in experimental techniques. Thus this book is expanding the interests to not only transport but optical and other properties for systems that include multilayer as well as monolayer graphene systems. The book comprises experimental and theoretical knowledge. The book is also accessible to graduate students.

Book Handbook of Graphene  Volume 1

Download or read book Handbook of Graphene Volume 1 written by Edvige Celasco and published by John Wiley & Sons. This book was released on 2019-06-28 with total page 875 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique multidisciplinary 8-volume set focuses on the emerging issues concerning graphene materials and provides a shared platform for both researcher and industry. The Handbook of Graphene comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of the advanced materials. The Handbook of Graphene comprises 140 chapters from world renowned experts. Volume 1 is solely focused on Growth, Synthesis, and Functionalization of Graphene. Some of the important topics include but not limited to: Graphite in metallic materials-growths, structures and defects of spheroidal graphite in ductile iron; synthesis and quality optimization; methods of synthesis and physico-chemical properties of fluorographenes; graphene-SiC reinforced hybrid composite foam: response to high strain rate deformation; atomic structure and electronic properties of few-layer graphene on SiC(001); features and prospects for epitaxial graphene on SiC; graphitic carbon/graphene on Si(111) via direct deposition of solid-state carbon atoms: growth mechanism and film characterization; chemical reactivity and variation in electronical properties of graphene on Ni(111) and reduced graphene oxide; chlorophyll and graphene: a new paradigm of biomimetic symphony; graphene structures: from preparations to applications; three-dimensional graphene-based structures: production methods, properties and applications; electrochemistry of graphene materials; hydrogen functionalized graphene nanostructure material for spintronic application; the impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene; exploiting graphene as an efficient catalytic template for organic transformations: synthesis, characterization and activity evaluation of graphene-based catalysts; exfoliated graphene based 2D materials; synthesis and catalytic behaviors; functionalization of graphene with molecules and/or nanoparticles for advanced applications; carbon allotropes "between diamond and graphite": how to create semiconductor properties in graphene and related structures.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Crystal Growth of Graphene Films and Graphene Nanoribbons Via Chemical Vapor Deposition

Download or read book Crystal Growth of Graphene Films and Graphene Nanoribbons Via Chemical Vapor Deposition written by Robert Michael Jacobberger and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is a two-dimensional carbon allotrope that has exceptional properties, including high charge carrier mobility, thermal conductivity, mechanical strength, and flexibility. Graphene is a semimetal, prohibiting its use in semiconductor applications in which a bandgap is required. However, graphene can be transformed from a semimetal into a semiconductor if it is confined into one-dimensional nanoribbons narrower than 10 nm with well-defined armchair edges. In this work, we study the crystal growth of graphene via chemical vapor deposition (CVD), which is the most promising method to produce graphene films on the industrial scale. We explore the growth of isolated graphene crystals, continuous graphene films, and narrow graphene nanoribbons with armchair edges. We gain key insight into the critical growth parameters and mechanisms that influence the crystal morphology, orientation, defect density, and evolution, providing an empirical understanding of the diverse growth behaviors observed in literature. Using this knowledge, we synthesize graphene with remarkably low pinhole density and achieve high-quality graphene at 750 [degrees]C on Cu(111), which is over 250 [degrees]C lower than the temperature typically used to grow graphene on copper from methane. We also describe our breakthrough in graphene nanoribbon synthesis. Highly anisotropic nanoribbons are formed on Ge(001) if an exceptionally slow growth rate is used. The nanoribbons are self-defining with predominantly smooth armchair edges, are self-aligning, and have tunable width to 10 nm. High-performance field-effect transistors incorporating these nanoribbons as channels display high conductance modulation 10,000 and high conductance> 5 [mu]S. This directional and anisotropic growth enables the fabrication of semiconducting nanoribbons directly on conventional semiconductor wafers and, thus, promises to allow the integration of nanoribbons into future hybrid integrated circuits. We additionally report our discovery that chemical patterns consisting of alternating stripes of graphene and germanium can direct the self-assembly of block copolymers into rationally-designed patterns with nanoscale features. Density multiplication of 10 is achieved and faster assembly kinetics are observed on graphene/germanium templates than on conventional chemical patterns based on polymer mats and brushes. This work opens the door for extensive assembly studies on chemical patterns based on two-dimensional materials.

Book Physics of Semiconductor Devices

Download or read book Physics of Semiconductor Devices written by V. K. Jain and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this workshop is to spread the vast amount of information available on semiconductor physics to every possible field throughout the scientific community. As a result, the latest findings, research and discoveries can be quickly disseminated. This workshop provides all participating research groups with an excellent platform for interaction and collaboration with other members of their respective scientific community. This workshop’s technical sessions include various current and significant topics for applications and scientific developments, including • Optoelectronics • VLSI & ULSI Technology • Photovoltaics • MEMS & Sensors • Device Modeling and Simulation • High Frequency/ Power Devices • Nanotechnology and Emerging Areas • Organic Electronics • Displays and Lighting Many eminent scientists from various national and international organizations are actively participating with their latest research works and also equally supporting this mega event by joining the various organizing committees.

Book Two dimensional Materials

Download or read book Two dimensional Materials written by Pramoda Kumar Nayak and published by BoD – Books on Demand. This book was released on 2016-08-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Book Recent Advances in Graphene Nanophotonics

Download or read book Recent Advances in Graphene Nanophotonics written by Shobhit K. Patel and published by Springer Nature. This book was released on 2023-05-20 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are growing advantages to the use of graphene-based nanophotonics in communication, sensing, security, safety, spectroscopy, manufacturing, biomedicine, agriculture, imaging, and other fields. These advantages, as well as the numerous challenges associated with this technology and proposed solutions to these challenges, are summarized in this book. The key objective of the book is to serve as a single-source reference for the rapidly expanding application aspects of the technology of graphene-based nanophotonics, as well as the number of modules required for their successful implementation. This book seeks to give readers a comprehensive understanding of several elements of graphene-based nanophotonics, such as emerging application areas, the design and modelling of sensors, absorbers, optical fiber, encoders, etc. A complete view of the progress and breakthroughs in novel materials for sensing, detecting and encoding technology is presented. The book also emphasizes the consequences of THz signals on human health, as well as the environmental components of THz. This book will be of tremendous value for those with an interest in electronic engineering, particularly those keeping an eye on this emerging technology.

Book Two Dimensional Semiconductors

Download or read book Two Dimensional Semiconductors written by Jingbo Li and published by John Wiley & Sons. This book was released on 2020-04-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-depth overview of two-dimensional semiconductors from theoretical studies, properties to emerging applications! Two-dimensional (2D) materials have attracted enormous attention due to their exotic properties deriving from their ultrathin dimensions. 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus and boron nitride, exhibit versatile optical, electronic, catalytic and mechanical properties, thus can be used in a wide range of applications, including electronics, optoelectronics and optical applications. Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications provides an in-depth view of 2D semiconductors from theoretical studies, properties to applications, taking into account the current state of research and development. It introduces various preparation methods and describes in detail the physical properties of 2D semiconductors including 2D alloys and heterostructures. The covered applications include, but are not limited to, field-effect transistors, spintronics, solar cells, photodetectors, light-emitting diode, sensors and bioelectronics. * Highly topical: 2D materials are a rapidly advancing field that attracts increasing attention * Concise overview: covers theoretical studies, preparation methods, physical properties, potential applications, the challenges and opportunities * Application oriented: focuses on 2D semiconductors that can be used in various applications such as field-effect transistors, solar cells, sensors and bioelectronics * Highly relevant: newcomers as well as experienced researchers in the field of 2D materials will benefit from this book Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications is written for materials scientists, semiconductor and solid state physicists, electrical engineers, and readers working in the semiconductor industry.

Book Molecular Beam Epitaxy

    Book Details:
  • Author : Hajime Asahi
  • Publisher : John Wiley & Sons
  • Release : 2019-04-15
  • ISBN : 111935501X
  • Pages : 510 pages

Download or read book Molecular Beam Epitaxy written by Hajime Asahi and published by John Wiley & Sons. This book was released on 2019-04-15 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.

Book State of the Art Program on Compound Semiconductors 52  SOTAPOCS 52

Download or read book State of the Art Program on Compound Semiconductors 52 SOTAPOCS 52 written by M. E. Overberg and published by The Electrochemical Society. This book was released on 2010-10 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers included in this issue of ECS Transactions were originally presented in the symposium ¿State-of-the-Art Program on Compound Semiconductors 52 (SOTAPOCS 52)¿, held during the 218th meeting of The Electrochemical Society, in Las Vegas, Nevada from October 10 to 15, 2010.

Book Silicon Carbide

    Book Details:
  • Author : Peter Friedrichs
  • Publisher : John Wiley & Sons
  • Release : 2011-04-08
  • ISBN : 3527629068
  • Pages : 528 pages

Download or read book Silicon Carbide written by Peter Friedrichs and published by John Wiley & Sons. This book was released on 2011-04-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book prestigiously covers our current understanding of SiC as a semiconductor material in electronics. Its physical properties make it more promising for high-powered devices than silicon. The volume is devoted to the material and covers methods of epitaxial and bulk growth. Identification and characterization of defects is discussed in detail. The contributions help the reader to develop a deeper understanding of defects by combining theoretical and experimental approaches. Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles. The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development.

Book Epitaxial Graphene on Silicon Carbide

Download or read book Epitaxial Graphene on Silicon Carbide written by Gemma Rius and published by CRC Press. This book was released on 2018-01-19 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.