Download or read book Gravitational N Body Simulations written by Sverre J. Aarseth and published by Cambridge University Press. This book was released on 2003-10-23 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses in detail all the relevant numerical methods for the classical N-body problem. It demonstrates how to develop clear and elegant algorithms for models of gravitational systems, and explains the fundamental mathematical tools needed to describe the dynamics of a large number of mutually attractive particles. Particular attention is given to the techniques needed to model astrophysical phenomena such as close encounters and the dynamics of black hole binaries. The author reviews relevant work in the field and covers applications to the problems of planetary formation and star cluster dynamics, both of Pleiades type and globular clusters. Self-contained and pedagogical, this book is suitable for graduate students and researchers in theoretical physics, astronomy and cosmology.
Download or read book Gravitational N Body Simulations written by Sverre J. Aarseth and published by Cambridge University Press. This book was released on 2003-10-23 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents basic methods for numerical simulation of gravitational systems, demonstrating how to develop clear and elegant algorithms. It explains the fundamental mathematical tools needed to describe the dynamics of a large number of mutually attractive particles, and the techniques needed to model various known planetary and astrophysical phenomena.
Download or read book Gravitational N Body Simulations written by Sverre J. Aarseth and published by Cambridge University Press. This book was released on 2009-10-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book presents basic methods of numerical simulation of gravitational systems, with applications in astronomy and cosmology. The first half of the book presents and explains the fundamental mathematical tools needed to describe the dynamics of a large number of mutually attractive particles. Particular attention is given to the techniques needed to model known planetary and astrophysical phenomena such as Hubble motion. The second half of the book demonstrates how to develop clear and elegant algorithms for models of gravitational systems.
Download or read book Galactic Dynamics written by James Binney and published by Princeton University Press. This book was released on 2011-10-30 with total page 902 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject. This new edition of the classic text is the definitive introduction to the field. ? A complete revision and update of one of the most cited references in astrophysics Provides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systems Serves as both a graduate textbook and a resource for researchers Includes 20 color illustrations, 205 figures, and more than 200 problems Covers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much more Companion volume to Galactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters
Download or read book Principles of Stellar Dynamics written by S. Chandrasekhar and published by Courier Corporation. This book was released on 2005-05-13 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this classic text, a Nobel Prize-winning astrophysicist presents the theory of stellar dynamics as a branch of classical dynamics--a discipline in the same general category as celestial mechanics. His method offers the advantages of clarifying the theory's fundamental issues and defining its underlying motivations. S. Chandrasekhar investigates two areas. The first concerns problems in which the time of relaxation of a stellar system is central. His method consists of analyzing the effects of stellar encounters in terms of the two-body problem of classical dynamics and applying this theory to the dynamics of star clusters. The second area investigates problems centering around Liouville's theorem and the solutions of the equation of continuity; here, the author discusses the dynamic implications of the existence of a field of differential motions, which appears to be the most striking kinematic feature of the galaxy and the extragalactic systems. This edition includes two papers by the author that were published after Principles of Stellar Dynamics and that have been studied and quoted extensively: "New Methods in Stellar Dynamics" (originally published in the Annals of the New York Academy of Sciences) and "Dynamical Friction" (originally published in The Astrophysical Journal).
Download or read book Many Body Tree Methods in Physics written by Susanne Pfalzner and published by Cambridge University Press. This book was released on 1996-10-13 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the fast N-body algorithms used in many branches of computational physics.
Download or read book Moving Planets Around written by Javier Roa and published by MIT Press. This book was released on 2020-09-01 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the laws of celestial mechanics and a step-by-step guide to developing software for direct use in astrophysics research. This book offers both an introduction to the laws of celestial mechanics and a step-by-step guide to developing software for direct use in astrophysics research. It bridges the gap between conventional textbooks, which present a rigorous and exhaustive exposition of theoretical concepts, and applying the theory to tackle real experiments. The text is written engagingly in dialogue form, presenting the research journey of the fictional Alice, Bob, and Professor Starmover. Moving Planets Around not only educates students on the laws of Newtonian gravity, it also provides all that they need to start writing their own software, from scratch, for simulating the dynamical evolution of planets and exoplanets, stars, or other heavenly bodies.
Download or read book Dark Matter and Dark Energy written by Sabino Matarrese and published by Springer Science & Business Media. This book was released on 2011-02-10 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
Download or read book Beyond CDM written by Sownak Bose and published by Springer. This book was released on 2018-08-02 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book employs computer simulations of ‘artificial’ Universes to investigate the properties of two popular alternatives to the standard candidates for dark matter (DM) and dark energy (DE). It confronts the predictions of theoretical models with observations using a sophisticated semi-analytic model of galaxy formation. Understanding the nature of dark matter (DM) and dark energy (DE) are two of the most central problems in modern cosmology. While their important role in the evolution of the Universe has been well established—namely, that DM serves as the building blocks of galaxies, and that DE accelerates the expansion of the Universe—their true nature remains elusive. In the first half, the authors consider ‘sterile neutrino’ DM, motivated by recent claims that these particles may have finally been detected. Using sophisticated models of galaxy formation, the authors find that future observations of the high redshift Universe and faint dwarf galaxies in the Local Group can place strong constraints on the sterile neutrino scenario. In the second half, the authors propose and test novel numerical algorithms for simulating Universes with a ‘modified’ theory of gravity, as an alternative explanation to accelerated expansion. The authors’ techniques improve the efficiency of these simulations by more than a factor of 20 compared to previous methods, inviting the readers into a new era for precision cosmological tests of gravity.
Download or read book Simulating Hamiltonian Dynamics written by Benedict Leimkuhler and published by Cambridge University Press. This book was released on 2004 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Download or read book Computer Simulation Using Particles written by R.W Hockney and published by CRC Press. This book was released on 2021-03-24 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.
Download or read book The Nature of Code written by Daniel Shiffman and published by No Starch Press. This book was released on 2024-09-03 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
Download or read book Vignettes In Gravitation And Cosmology written by Lakshmanan Sriramkumar and published by World Scientific. This book was released on 2012-03-20 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.
Download or read book Numerical Simulation in Molecular Dynamics written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2007-08-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.
Download or read book The Cambridge N Body Lectures written by Sverre Aarseth and published by Springer. This book was released on 2008-09-02 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published under the auspices of the Royal Astronomical Society, this volume contains a set of extensive school tested lectures, with the aim to give a coherent and thorough background knowledge of the subject and to introduce the latest developments in N-body computational astrophysics. The topics cover a wide range from the classical few-body problem with discussions of resonance, chaos and stability to realistic modelling of star clusters as well as descriptions of codes, algorithms and special hardware for N-body simulations. This collection of topics, related to the gravitational N-body problem, will prove useful to both students and researchers in years to come. 1) Published under the auspices of the Royal Astronomical Society.
Download or read book Galactic Astronomy written by James Binney and published by Princeton University Press. This book was released on 2021-07-13 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the definitive treatment of the phenomenology of galaxies--a clear and comprehensive volume that takes full account of the extraordinary recent advances in the field. The book supersedes the classic text Galactic Astronomy that James Binney wrote with Dimitri Mihalas, and complements Galactic Dynamics by Binney and Scott Tremaine. It will be invaluable to researchers and is accessible to any student who has a background in undergraduate physics. The book draws on observations both of our own galaxy, the Milky Way, and of external galaxies. The two sources are complementary, since the former tends to be highly detailed but difficult to interpret, while the latter is typically poorer in quality but conceptually simpler to understand. Binney and Merrifield introduce all astronomical concepts necessary to understand the properties of galaxies, including coordinate systems, magnitudes and colors, the phenomenology of stars, the theory of stellar and chemical evolution, and the measurement of astronomical distances. The book's core covers the phenomenology of external galaxies, star clusters in the Milky Way, the interstellar media of external galaxies, gas in the Milky Way, the structure and kinematics of the stellar components of the Milky Way, and the kinematics of external galaxies. Throughout, the book emphasizes the observational basis for current understanding of galactic astronomy, with references to the original literature. Offering both new information and a comprehensive view of its subject, it will be an indispensable source for professionals, as well as for graduate students and advanced undergraduates.
Download or read book Special Purpose Computers written by Berni J. Alder and published by Academic Press. This book was released on 2014-05-10 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special Purpose Computers describes special-purpose computers and compares them to general-purpose computers in terms of speed and cost. Examples of computers that were designed for the efficient solution of long established algorithms are given, including Navier-Stokes hydrodynamic solvers, classical molecular dynamic machines, and Ising model computers. Comprised of seven chapters, this volume begins by documenting the progress of the CalTech Concurrent Computation Program and its evolution from computational high-energy physics to a supercomputer initiative, with emphasis on the lessons learned including computer architecture issues and the trade-offs between in-house and commercial development. The reader is then introduced to the QCD Machine, a special-purpose parallel supercomputer that was designed and built to solve the lattice quantum chromodynamics problem. Subsequent chapters focus on the Geometry-Defining Processors and their application to the solution of partial differential equations; the Navier-Stokes computer; parallel processing using the Loosely Coupled Array of Processors (LCAP) system; and the Delft Ising system processor. The design and implementation of the Delft molecular-dynamics processor are also described. This book will be of interest to computer engineers and designers.