EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Graph Prompting  Unlocking the Power of Graph Neural Networks and Prompt Engineering for Advanced AI Applications

Download or read book Graph Prompting Unlocking the Power of Graph Neural Networks and Prompt Engineering for Advanced AI Applications written by Anand Vemula and published by Anand Vemula. This book was released on with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Graph Prompting" explores the intersection of Graph Neural Networks (GNNs) and prompt engineering, providing a comprehensive guide on leveraging these technologies for advanced AI applications. The book is structured into several key sections, each delving into different aspects of graph-based AI. #### Fundamentals of Graph Theory The book begins by laying the foundation with essential concepts in graph theory, such as nodes, edges, types of graphs, and graph representations. It explains fundamental metrics like degree, centrality, and clustering coefficients, and covers important algorithms for pathfinding and connectivity. #### Introduction to Prompting The next section introduces prompting in AI, particularly for large language models (LLMs). It covers the basics of prompt engineering, types of prompts (instruction-based, task-based), and design principles. Techniques like contextual prompting, chain-of-thought prompting, and few-shot/zero-shot prompting are discussed, providing practical examples and use cases. #### Graph Neural Networks (GNNs) A comprehensive overview of GNNs follows, detailing their architecture and applications. Key models like Graph Convolutional Networks (GCNs), GraphSAGE, and Graph Attention Networks (GATs) are explained with examples. The section also covers advanced GNN models, including transformer-based graph models and attention mechanisms. #### Graph Prompting for LLMs This section focuses on integrating GNNs with LLMs. It explores techniques for using graph embeddings in prompting, enhancing the capabilities of LLMs in various tasks such as recommendation systems, anomaly detection, and question answering. Practical applications and case studies demonstrate the effectiveness of these integrations. #### Ethics and Fairness in Graph Prompting Ethical considerations are crucial, and the book addresses biases in graph data and fairness in graph algorithms. It discusses the ethical implications of using graph data and provides strategies to ensure fairness and mitigate biases. #### Practical Applications and Case Studies The book highlights real-world applications of graph prompting in healthcare, social networks, and recommendation systems. Each case study showcases the practical benefits and challenges of implementing these technologies in different domains. #### Implementation Guides and Tools For practitioners, the book offers step-by-step implementation guides, using popular libraries like PyTorch Geometric and DGL. Example projects provide hands-on experience, helping readers apply the concepts discussed. #### Future Trends and Conclusion The book concludes with a look at future trends in graph prompting, including scalable GNNs, graph-based reinforcement learning, and ethical AI. It encourages continuous exploration and adaptation to leverage the full potential of graph-based AI technologies. Overall, "Graph Prompting" is a detailed and practical guide, offering valuable insights and tools for leveraging GNNs and prompt engineering to advance AI applications across various domains.

Book Artificial Intelligence in Healthcare

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Book Artificial Intelligence with Python

Download or read book Artificial Intelligence with Python written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2017-01-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

Book IBM PowerAI  Deep Learning Unleashed on IBM Power Systems Servers

Download or read book IBM PowerAI Deep Learning Unleashed on IBM Power Systems Servers written by Dino Quintero and published by IBM Redbooks. This book was released on 2019-06-05 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM® Redbooks® publication is a guide about the IBM PowerAI Deep Learning solution. This book provides an introduction to artificial intelligence (AI) and deep learning (DL), IBM PowerAI, and components of IBM PowerAI, deploying IBM PowerAI, guidelines for working with data and creating models, an introduction to IBM SpectrumTM Conductor Deep Learning Impact (DLI), and case scenarios. IBM PowerAI started as a package of software distributions of many of the major DL software frameworks for model training, such as TensorFlow, Caffe, Torch, Theano, and the associated libraries, such as CUDA Deep Neural Network (cuDNN). The IBM PowerAI software is optimized for performance by using the IBM Power SystemsTM servers that are integrated with NVLink. The AI stack foundation starts with servers with accelerators. graphical processing unit (GPU) accelerators are well-suited for the compute-intensive nature of DL training, and servers with the highest CPU to GPU bandwidth, such as IBM Power Systems servers, enable the high-performance data transfer that is required for larger and more complex DL models. This publication targets technical readers, including developers, IT specialists, systems architects, brand specialist, sales team, and anyone looking for a guide about how to understand the IBM PowerAI Deep Learning architecture, framework configuration, application and workload configuration, and user infrastructure.

Book Dive Into Deep Learning

Download or read book Dive Into Deep Learning written by Joanne Quinn and published by Corwin Press. This book was released on 2019-07-15 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.

Book Transfer Learning for Natural Language Processing

Download or read book Transfer Learning for Natural Language Processing written by Paul Azunre and published by Simon and Schuster. This book was released on 2021-08-31 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions

Book Artificial Intelligence  China  Russia  and the Global Order

Download or read book Artificial Intelligence China Russia and the Global Order written by Shazeda Ahmed and published by . This book was released on 2019 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Artificial intelligence (AI) and big data promise to help reshape the global order. For decades, most political observers believed that liberal democracy offered the only plausible future pathways for big, industrially sophisticated countries to make their citizens rich. Now, by allowing governments to monitor, understand, and control their citizens far more effectively than ever before, AI offers a plausible way for big, economically advanced countries to make their citizens rich while maintaining control over them--the first since the end of the Cold War. That may help fuel and shape renewed international competition between types of political regimes that are all becoming more "digital." Just as competition between liberal democratic, fascist, and communist social systems defined much of the twentieth century, how may the struggle between digital liberal democracy and digital authoritarianism define and shape the twenty-first? This work highlights several key areas where AI-related technologies have clear implications for globally integrated strategic planning and requirements development"--

Book Efficient Processing of Deep Neural Networks

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Book Artificial Intelligence in Medicine

Download or read book Artificial Intelligence in Medicine written by David Riaño and published by Springer. This book was released on 2019-06-19 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.

Book Deep Learning Illustrated

Download or read book Deep Learning Illustrated written by Jon Krohn and published by Addison-Wesley Professional. This book was released on 2019-08-05 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Book Python Machine Learning Projects

Download or read book Python Machine Learning Projects written by Lisa Tagliaferri and published by DigitalOcean. This book was released on 2019-05-02 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions — sometimes without final input from humans who may be impacted by these findings — it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers of today and tomorrow with tools they can use to better understand, evaluate, and shape machine learning to help ensure that it is serving us all. This book will set you up with a Python programming environment if you don’t have one already, then provide you with a conceptual understanding of machine learning in the chapter “An Introduction to Machine Learning.” What follows next are three Python machine learning projects. They will help you create a machine learning classifier, build a neural network to recognize handwritten digits, and give you a background in deep reinforcement learning through building a bot for Atari.

Book Artificial Intelligence in the 21st Century

Download or read book Artificial Intelligence in the 21st Century written by Stephen Lucci and published by Mercury Learning and Information. This book was released on 2015-12-10 with total page 1168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition provides a comprehensive, colorful, up-to-date, and accessible presentation of AI without sacrificing theoretical foundations. It includes numerous examples, applications, full color images, and human interest boxes to enhance student interest. New chapters on robotics and machine learning are now included. Advanced topics cover neural nets, genetic algorithms, natural language processing, planning, and complex board games. A companion DVD is provided with resources, applications, and figures from the book. Numerous instructors’ resources are available upon adoption. eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected]. FEATURES: • Includes new chapters on robotics and machine learning and new sections on speech understanding and metaphor in NLP • Provides a comprehensive, colorful, up to date, and accessible presentation of AI without sacrificing theoretical foundations • Uses numerous examples, applications, full color images, and human interest boxes to enhance student interest • Introduces important AI concepts e.g., robotics, use in video games, neural nets, machine learning, and more thorough practical applications • Features over 300 figures and color images with worked problems detailing AI methods and solutions to selected exercises • Includes DVD with resources, simulations, and figures from the book • Provides numerous instructors’ resources, including: solutions to exercises, Microsoft PP slides, etc.

Book Converging Technologies for Improving Human Performance

Download or read book Converging Technologies for Improving Human Performance written by William Sims Bainbridge and published by Springer. This book was released on 2014-03-14 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: M. C. Roco and W.S. Bainbridge In the early decades of the 21st century, concentrated efforts can unify science based on the unity of nature, thereby advancing the combination of nanotechnology, biotechnology, information technology, and new technologies based in cognitive science. With proper attention to ethical issues and societal needs, converging in human abilities, societal technologies could achieve a tremendous improvement outcomes, the nation's productivity, and the quality of life. This is a broad, cross cutting, emerging and timely opportunity of interest to individuals, society and humanity in the long term. The phrase "convergent technologies" refers to the synergistic combination of four major "NBIC" (nano-bio-info-cogno) provinces of science and technology, each of which is currently progressing at a rapid rate: (a) nanoscience and nanotechnology; (b) biotechnology and biomedicine, including genetic engineering; (c) information technology, including advanced computing and communications; (d) cognitive science, including cognitive neuroscience. Timely and Broad Opportunity. Convergence of diverse technologies is based on material unity at the nanoscale and on technology integration from that scale.

Book IoT Fundamentals

    Book Details:
  • Author : David Hanes
  • Publisher : Cisco Press
  • Release : 2017-05-30
  • ISBN : 0134307089
  • Pages : 782 pages

Download or read book IoT Fundamentals written by David Hanes and published by Cisco Press. This book was released on 2017-05-30 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, billions of devices are Internet-connected, IoT standards and protocols are stabilizing, and technical professionals must increasingly solve real problems with IoT technologies. Now, five leading Cisco IoT experts present the first comprehensive, practical reference for making IoT work. IoT Fundamentals brings together knowledge previously available only in white papers, standards documents, and other hard-to-find sources—or nowhere at all. The authors begin with a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions. Next, they walk through each key technology, protocol, and technical building block that combine into complete IoT solutions. Building on these essentials, they present several detailed use cases, including manufacturing, energy, utilities, smart+connected cities, transportation, mining, and public safety. Whatever your role or existing infrastructure, you’ll gain deep insight what IoT applications can do, and what it takes to deliver them. Fully covers the principles and components of next-generation wireless networks built with Cisco IOT solutions such as IEEE 802.11 (Wi-Fi), IEEE 802.15.4-2015 (Mesh), and LoRaWAN Brings together real-world tips, insights, and best practices for designing and implementing next-generation wireless networks Presents start-to-finish configuration examples for common deployment scenarios Reflects the extensive first-hand experience of Cisco experts

Book Text Analytics with Python

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2016-11-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data

Book OECD Sovereign Borrowing Outlook 2021

Download or read book OECD Sovereign Borrowing Outlook 2021 written by OECD and published by OECD Publishing. This book was released on 2021-05-20 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition of the OECD Sovereign Borrowing Outlook reviews developments in response to the COVID-19 pandemic for government borrowing needs, funding conditions and funding strategies in the OECD area.

Book Artificial Intelligence in Medical Imaging

Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.