Download or read book Fundamentals of Brain Network Analysis written by Alex Fornito and published by Academic Press. This book was released on 2016-03-04 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain
Download or read book Graph Connections written by Lowell W. Beineke and published by . This book was released on 1997 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book introduces mathematicians to the applicability of graph theory to other areas, from number theory to linear algebra, neural networks, and finance. This is achieved through a series of expository chapters, each written by an expert in a different field. Each chapter has been carefully edited so that the terminology and notation are as standardized as possible. The book will be useful to both graph theorists and practitioners in other areas.
Download or read book Large Networks and Graph Limits written by László Lovász and published by American Mathematical Soc.. This book was released on 2012 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, it became apparent that a large number of the most interesting structures and phenomena of the world can be described by networks. To develop a mathematical theory of very large networks is an important challenge. This book describes one recent approach to this theory, the limit theory of graphs, which has emerged over the last decade. The theory has rich connections with other approaches to the study of large networks, such as ``property testing'' in computer science and regularity partition in graph theory. It has several applications in extremal graph theory, including the exact formulations and partial answers to very general questions, such as which problems in extremal graph theory are decidable. It also has less obvious connections with other parts of mathematics (classical and non-classical, like probability theory, measure theory, tensor algebras, and semidefinite optimization). This book explains many of these connections, first at an informal level to emphasize the need to apply more advanced mathematical methods, and then gives an exact development of the theory of the algebraic theory of graph homomorphisms and of the analytic theory of graph limits. This is an amazing book: readable, deep, and lively. It sets out this emerging area, makes connections between old classical graph theory and graph limits, and charts the course of the future. --Persi Diaconis, Stanford University This book is a comprehensive study of the active topic of graph limits and an updated account of its present status. It is a beautiful volume written by an outstanding mathematician who is also a great expositor. --Noga Alon, Tel Aviv University, Israel Modern combinatorics is by no means an isolated subject in mathematics, but has many rich and interesting connections to almost every area of mathematics and computer science. The research presented in Lovasz's book exemplifies this phenomenon. This book presents a wonderful opportunity for a student in combinatorics to explore other fields of mathematics, or conversely for experts in other areas of mathematics to become acquainted with some aspects of graph theory. --Terence Tao, University of California, Los Angeles, CA Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks. It is an authoritative, masterful text that reflects Lovasz's position as the main architect of this rapidly developing theory. The book is a must for combinatorialists, network theorists, and theoretical computer scientists alike. --Bela Bollobas, Cambridge University, UK
Download or read book Networks Crowds and Markets written by David Easley and published by Cambridge University Press. This book was released on 2010-07-19 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are all film stars linked to Kevin Bacon? Why do the stock markets rise and fall sharply on the strength of a vague rumour? How does gossip spread so quickly? Are we all related through six degrees of separation? There is a growing awareness of the complex networks that pervade modern society. We see them in the rapid growth of the internet, the ease of global communication, the swift spread of news and information, and in the way epidemics and financial crises develop with startling speed and intensity. This introductory book on the new science of networks takes an interdisciplinary approach, using economics, sociology, computing, information science and applied mathematics to address fundamental questions about the links that connect us, and the ways that our decisions can have consequences for others.
Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Download or read book Rainbow Connections of Graphs written by Xueliang Li and published by Springer Science & Business Media. This book was released on 2012-02-23 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rainbow connections are natural combinatorial measures that are used in applications to secure the transfer of classified information between agencies in communication networks. Rainbow Connections of Graphs covers this new and emerging topic in graph theory and brings together a majority of the results that deal with the concept of rainbow connections, first introduced by Chartrand et al. in 2006. The authors begin with an introduction to rainbow connectedness, rainbow coloring, and rainbow connection number. The work is organized into the following categories, computation of the exact values of the rainbow connection numbers for some special graphs, algorithms and complexity analysis, upper bounds in terms of other graph parameters, rainbow connection for dense and sparse graphs, for some graph classes and graph products, rainbow k-connectivity and k-rainbow index, and, rainbow vertex-connection number. Rainbow Connections of Graphs appeals to researchers and graduate students in the field of graph theory. Conjectures, open problems and questions are given throughout the text with the hope for motivating young graph theorists and graduate students to do further study in this subject.
Download or read book Applying Graph Theory in Ecological Research written by Mark R.T. Dale and published by Cambridge University Press. This book was released on 2017-11-09 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book clearly describes the many applications of graph theory to ecological questions, providing instruction and encouragement to researchers.
Download or read book Proceedings of the Conference on Graph Connections January 28 31 1998 Cochin written by and published by Allied Publishers (India). This book was released on 1999 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Algorithmic Graph Theory written by Alan Gibbons and published by Cambridge University Press. This book was released on 1985-06-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to pure and applied graph theory with an emphasis on algorithms and their complexity.
Download or read book Properly Colored Connectivity of Graphs written by Xueliang Li and published by Springer. This book was released on 2018-05-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.
Download or read book Graph Based Representations in Pattern Recognition written by Francisco Escolano and published by Springer Science & Business Media. This book was released on 2007-05-31 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 6th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2007, held in Alicante, Spain in June 2007. The 23 revised full papers and 14 revised poster papers presented were carefully reviewed and selected from 54 submissions. The papers are organized in topical sections on matching, distances and measures, graph-based segmentation and image processing, graph-based clustering, graph representations, pyramids, combinatorial maps and homologies, as well as graph clustering, embedding and learning.
Download or read book AI for Games Third Edition written by Ian Millington and published by CRC Press. This book was released on 2019-03-18 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: AI is an integral part of every video game. This book helps professionals keep up with the constantly evolving technological advances in the fast growing game industry and equips students with up-to-date information they need to jumpstart their careers. This revised and updated Third Edition includes new techniques, algorithms, data structures and representations needed to create powerful AI in games. Key Features A comprehensive professional tutorial and reference to implement true AI in games Includes new exercises so readers can test their comprehension and understanding of the concepts and practices presented Revised and updated to cover new techniques and advances in AI Walks the reader through the entire game AI development process
Download or read book Image Processing and Analysis with Graphs written by Olivier Lezoray and published by CRC Press. This book was released on 2017-07-12 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.
Download or read book Introduction to Random Graphs written by Alan Frieze and published by Cambridge University Press. This book was released on 2016 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
Download or read book European Control Conference 1995 written by and published by European Control Association. This book was released on 1995-09-05 with total page 878 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995
Download or read book Adventures in Graph Theory written by W. David Joyner and published by Birkhäuser. This book was released on 2017-12-28 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards advanced undergraduate and graduate students and is particularly useful for those trying to decide what type of problem to tackle for their dissertation. This book can also serve as a reference for anyone interested in exploring how they can apply graph theory to other parts of mathematics.
Download or read book Machine Learning and Knowledge Discovery in Databases written by Frank Hutter and published by Springer Nature. This book was released on 2021-02-24 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.