EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theory of Graded Bandgap Thin Film Solar Cells

Download or read book Theory of Graded Bandgap Thin Film Solar Cells written by Faiz Ahmad and published by Springer Nature. This book was released on 2022-05-31 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are cheap and easy to manufacture but require improvements as their efficiencies are low compared to that of the commercially dominant crystalline-silicon solar cells. An optoelectronic model is formulated and implemented along with the differential evolution algorithm to assess the efficacy of grading the bandgap of the CIGS, CZTSSe, and AlGaAs photon-absorbing layer for optimizing the power-conversion efficiency of thin-film CIGS, CZTSSe, and AlGaAs solar cells, respectively, in the two-terminal single-junction format. Each thin-film solar cell is modeled as a photonic device as well as an electronic device. Solar cells with two (or more) photon-absorbing layers can also be handled using the optolelectronic model, whose results will stimulate experimental techniques for bandgap grading to enable ubiquitous small-scale harnessing of solar energy.

Book Next Generation Multilayer Graded Bandgap Solar Cells

Download or read book Next Generation Multilayer Graded Bandgap Solar Cells written by A. A. Ojo and published by Springer. This book was released on 2018-08-16 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will guide Photovoltaics researchers in a new way of thinking about harvesting light energy from all wavelengths of the solar spectrum. It closes the gap between general solar cells books and photovoltaics journal articles, by focusing on the latest developments in our understanding of solid-state device physics. The material presented is experimental and based on II-VI thin-film materials, mainly CdTe-based solar cells. The authors describe the use of new device design, based on multilayer graded bandgap configuration, using CdTe-based solar cells. The authors also explain how the photo-generated currents can be enhanced using multi-step charge carrier production. The possibility of fabricating these devices using low-cost and scalable electroplating is demonstrated. The value of electroplating for large area electronic devices such as PV solar panels, display devices and nano-technology devices are also demonstrated. By enabling new understanding of the engineering of electroplated semiconductor materials and providing an overview of the semiconductor physics and technology, this practical book is ideal to guide researchers, engineers, and manufacturers on future solar cell device designs and fabrications. Discusses in detail the processes of growths, treatments, solar cell device fabrication and solid state physics, improving readers’ understanding of fundamental solid state physics; Enables future improvements in CdTe-based device efficiency; Explains the significance of defects in deposited semiconductor materials and interfaces that affect the material properties and resulting device performance.

Book A Computer Analysis of Heterojunction and Graded Bandgap Solar Cells

Download or read book A Computer Analysis of Heterojunction and Graded Bandgap Solar Cells written by Joseph Edward Sutherland and published by . This book was released on 1977 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Graded Bandgap Solar Cells

Download or read book Graded Bandgap Solar Cells written by Larry C. Olsen and published by . This book was released on 1984 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graded bandgap solar cells were investigated that have a structure consisting of an N-type graded emitter and a base region with a constant bandgap. The emitter bandgap was 2.1 eV at the front surface and then graded to 1.74 eV at the N/P homojunction based on a 1.74 eV bandgap. The Aluminum Gallium Arsenide homojunction had a maximum value for internal photoresponse of 20% while the graded bandgap cell exhibited a peak value of 80%. Analyses of photoresponse data indicates the Aluminum Gallium Gallium Arsenide homojunctions are characterized by minority carrier diffusion lengths of only .03 micrometers in the emitter and 0.1 micrometers in the base. Thus, the effective field resulting from the graded emitter in the graded bandgap cell is necessary for an adequate photoresponse. Investigations of heteroface Gallium Arsenide solar cells continued with the purpose of building a data base for processing technology and characterization techniques. GaAs solar cells were fabricated with efficiencies over 17% using a P/N homojunction structure ans A1GaAs heteroface. Electro-optical characterization of GaAs cells has resulted in improved understanding of minority carrier properties, surface recombination velocity and current loss mechanisms. Keywords: Space power.

Book Optoelectronic Modeling and Optimization of Graded bandgap Thin film Solar Cells

Download or read book Optoelectronic Modeling and Optimization of Graded bandgap Thin film Solar Cells written by Faiz Ahmad and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystalline-silicon (c-Si) photovoltaic solar cells are increasingly taking over the energy production sector nowadays. Even in comparison to coal-fired and nuclear plants for generation of electricity, the cost of harnessing solar energy by photovoltaic means has gone down considerably during the last decade. However, microwatt-scale generators of electricity are needed for human progress to become effectively unconstrained by economics. Large-scale adoption of thin-film solar cells is necessary for that to happen. However, Earth-abundant materials with low toxicity and high power-conversion efficiency must be used for thin-film solar cells. A series of theoretical investigations were performed to tackle the problem of materials scarcity as well as to explore potential enhancements of power-conversion efficiency in thin-film solar cells by thinning the absorber layer, grading the bandgap in the absorber layer, and modifying the back end. Three different types of thin-film solar cells were considered: CIGS, CZTSSe, and AlGaAs. The bandgap of the absorber layer was varied either sinusoidally or linearly. The thickness of the absorber layer was varied from 100 nm to 2200 nm. Back-end modifications incorporating a periodically corrugated backreflector and a back-surface passivation layer were considered as well. A coupled optoelectronic model was used along with the differential evolution algorithm to maximize the efficiency in relation to geometric and bandgap-grading parameters. Furthermore, as colored solar cells can promote large-scale adoption of rooftop solar cells, efficiency loss due to color-rejection filters was estimated. The coupled optoelectronic optimization predicted that tailored bandgap grading could significantly improve efficiency for all three considered thin-film solar cells. For CIGS solar cells with a 2200-nm-thick absorber layer, an efficiency of 27.7% was predicted with a sinusoidally graded bandgap absorber layer along with back-end modifications in comparison to 22% efficiency achieved experimentally with a homogeneous CIGS absorber layer. An efficiency of 21.7% was predicted with sinusoidal grading of a 870-nm-thick absorber CZTSSe layer in comparison to 12.6% efficiency achieved experimentally with a 2200-nm-thick homogeneous CZTSSe layer. Similarly, an efficiency of 34.5% was predicted through optoelectronic optimization of AlGaAs solar cells with a sinusoidally graded bandgap absorber layer along with back-end modifications in comparison to 27.6% efficiency achieved experimentally with a homogeneous AlGaAs absorber layer. For colored thin-film solar cells, predictions of the efficiency loss varied from 10% to 20%, depending upon the percentage of rejection of incoming solar photons. Thus, optoelectronic optimization by bandgap grading and back-end modifications is more than enough to swallow efficiency reduction by the rejection of a certain percentage of incoming solar photons. Thus, the proposed design strategies provide a way to realize more efficient thin-film solar cells for the ubiquitous harnessing of solar energy at low-wattage levels, thereby promoting widespread adoption of thin-film solar cells as local energy sources. Also, cheap, small-scale off-grid generation of electricity will provide access to energy for populations living without electricity far from central grids in less-developed and developing regions of our planet, thus equalizing opportunity and decreasing income and gender gaps.

Book Design and Modeling of Graded Bandgap Amorphous Silicon germanium Solar Cells Fabricated by Plasma Enhanced Chemical Vapor Deposition

Download or read book Design and Modeling of Graded Bandgap Amorphous Silicon germanium Solar Cells Fabricated by Plasma Enhanced Chemical Vapor Deposition written by Greg Charles Baldwin and published by . This book was released on 1994 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Thin Film Solar Cells

Download or read book Advances in Thin Film Solar Cells written by I M Dharmadasa and published by CRC Press. This book was released on 2012-09-17 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines "impact ionization" and "impurity photovoltaic" effects. The improved device understanding presented in this book should impact and guide future device design and low-cost thin-film solar panel manufacture.

Book Development of an  AlGaAs Ga As  Graded Band Gap Solar Cell

Download or read book Development of an AlGaAs Ga As Graded Band Gap Solar Cell written by and published by . This book was released on 1976 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Preparation of Thin Film Graded Band Gap Solar Cells

Download or read book The Preparation of Thin Film Graded Band Gap Solar Cells written by R. Radojcic and published by . This book was released on 1978 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling of a Graded Band Gap Solar Cell

Download or read book Modeling of a Graded Band Gap Solar Cell written by Douglas Page and published by . This book was released on 1984 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Record Breaking Solar Cells

Download or read book Record Breaking Solar Cells written by and published by . This book was released on 2012 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Photovoltaic Science and Engineering

Download or read book Handbook of Photovoltaic Science and Engineering written by Antonio Luque and published by John Wiley & Sons. This book was released on 2011-01-31 with total page 1172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most comprehensive, authoritative and widely cited reference on photovoltaic solar energy Fully revised and updated, the Handbook of Photovoltaic Science and Engineering, Second Edition incorporates the substantial technological advances and research developments in photovoltaics since its previous release. All topics relating to the photovoltaic (PV) industry are discussed with contributions by distinguished international experts in the field. Significant new coverage includes: three completely new chapters and six chapters with new authors device structures, processing, and manufacturing options for the three major thin film PV technologies high performance approaches for multijunction, concentrator, and space applications new types of organic polymer and dye-sensitized solar cells economic analysis of various policy options to stimulate PV growth including effect of public and private investment Detailed treatment covers: scientific basis of the photovoltaic effect and solar cell operation the production of solar silicon and of silicon-based solar cells and modules how choice of semiconductor materials and their production influence costs and performance making measurements on solar cells and modules and how to relate results under standardised test conditions to real outdoor performance photovoltaic system installation and operation of components such as inverters and batteries. architectural applications of building-integrated PV Each chapter is structured to be partially accessible to beginners while providing detailed information of the physics and technology for experts. Encompassing a review of past work and the fundamentals in solar electric science, this is a leading reference and invaluable resource for all practitioners, consultants, researchers and students in the PV industry.

Book Thin Film Silicon Solar Cells

Download or read book Thin Film Silicon Solar Cells written by Arvind Victor Shah and published by CRC Press. This book was released on 2010-08-19 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, startin

Book Numerical Analysis of a Graded Band Gap Solar Cell

Download or read book Numerical Analysis of a Graded Band Gap Solar Cell written by John J. Hayes and published by . This book was released on 1986 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation and Optimization of a Graded Band GAP Solar Cell

Download or read book Simulation and Optimization of a Graded Band GAP Solar Cell written by James A. Farrell and published by . This book was released on 1985 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: