EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book GOLD PRICE ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON

Download or read book GOLD PRICE ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-05-23 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The challenge of this project is to accurately predict the future adjusted closing price of Gold ETF across a given period of time in the future. The problem is a regression problem, because the output value which is the adjusted closing price in this project is continuous value. Data for this study is collected from November 18th 2011 to January 1st 2019 from various sources. The data has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. The dataset has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. To perform forecasting based on regression adjusted closing price of gold, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. The machine learning models used predict gold daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.

Book FOUR PROJECTS  PREDICTION AND FORECASTING USING MACHINE LEARNING WITH PYTHON

Download or read book FOUR PROJECTS PREDICTION AND FORECASTING USING MACHINE LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-05-25 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: GOLD PRICE ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON The challenge of this project is to accurately predict the future adjusted closing price of Gold ETF across a given period of time in the future. The problem is a regression problem, because the output value which is the adjusted closing price in this project is continuous value. Data for this study is collected from November 18th 2011 to January 1st 2019 from various sources. The data has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. The dataset has 1718 rows in total and 80 columns in total. Data for attributes, such as Oil Price, Standard and Poor’s (S&P) 500 index, Dow Jones Index US Bond rates (10 years), Euro USD exchange rates, prices of precious metals Silver and Platinum and other metals such as Palladium and Rhodium, prices of US Dollar Index, Eldorado Gold Corporation and Gold Miners ETF were gathered. To perform forecasting based on regression adjusted closing price of gold, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. The machine learning models used predict gold daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model. PROJECT 2: WIND POWER ANALYSIS AND FORECASTING USING MACHINE LEARNING WITH PYTHON Renewable energy remains one of the most important topics for a sustainable future. Wind, being a perennial source of power, could be utilized to satisfy our power requirements. With the rise of wind farms, wind power forecasting would prove to be quite useful. It contains various weather, turbine and rotor features. Data has been recorded from January 2018 till March 2020. Readings have been recorded at a 10-minute interval. A longterm wind forecasting technique is thus required. The attributes in the dataset are as follows: ActivePower, AmbientTemperature, BearingShaftTemperature, Blade1PitchAngle, Blade2PitchAngle, Blade3PitchAngle, ControlBoxTemperature, GearboxBearingTemperature, GearboxOilTemperature, GeneratorRP, GeneratorWinding1Temperature, GeneratorWinding2Temperature, HubTemperature, MainBoxTemperature, NacellePosition, ReactivePower, RotorRPM, TurbineStatus, WTG, WindDirection, and WindSpeed. To perform forecasting based on regression active power, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict categorized active power as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: MACHINE LEARNING FOR CONCRETE COMPRESSIVE STRENGTH ANALYSIS AND PREDICTION WITH PYTHON Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. The actual concrete compressive strength (MPa) for a given mixture under a specific age (days) was determined from laboratory. This dataset is in raw form (not scaled). There are 1030 observations, 9 attributes, 8 quantitative input variables, and 1 quantitative output variable in dataset. The attributes in the dataset are as follows: Cement (component 1); Blast Furnace Slag (component 2); Fly Ash (component 3); Water (component 4); Superplasticizer (component 5); Coarse Aggregate; Fine Aggregate (component 7); Age; and Concrete compressive strength. To perform regression on concrete compressive strength, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict clusters as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON The dataset used in this project is from Walmart which is a renowned retail corporation that operates a chain of hypermarkets. Walmart has provided a data combining of 45 stores including store information and monthly sales. The data is provided on weekly basis. Walmart tries to find the impact of holidays on the sales of store. For which it has included four holidays’ weeks into the dataset which are Christmas, Thanksgiving, Super bowl, Labor Day. In this project, you are going to analyze, forecast weekly sales, perform clustering, and predict the resulting clusters. The dataset covers sales from 2010-02-05 to 2012-11-01. Following are the attributes in the dataset: Store - the store number; Date - the week of sales; Weekly_Sales - sales for the given store; Holiday_Flag - whether the week is a special holiday week 1 – Holiday week 0 – Non-holiday week; Temperature - Temperature on the day of sale; Fuel_Price - Cost of fuel in the region; CPI – Prevailing consumer price index; and Unemployment - Prevailing unemployment rate. To perform regression on weekly sales, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, and MLP regression. To perform clustering, you will use K-Means algorithm. The machine learning models used predict clusters as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Book STOCK PRICE ANALYSIS  PREDICTION  AND FORECASTING USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON

Download or read book STOCK PRICE ANALYSIS PREDICTION AND FORECASTING USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-05-27 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dataset is a playground for fundamental and technical analysis. It is said that 30% of traffic on stocks is already generated by machines, can trading be fully automated? If not, there is still a lot to learn from historical data. The dataset consists of data spans from 2010 to the end 2016, for companies new on stock market date range is shorter. To perform forecasting based on regression adjusted closing price of gold, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, MLP regression, and LSTM (Long-Short Term Memory) regression. The machine learning models used predict gold daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, Gaussian Mixture Model classifier, and Extra Trees classifier. Finally, you will plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.

Book CRYPTOCURRENCY PRICE ANALYSIS  PREDICTION  AND FORECASTING USING MACHINE LEARNING WITH PYTHON

Download or read book CRYPTOCURRENCY PRICE ANALYSIS PREDICTION AND FORECASTING USING MACHINE LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-21 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this project, we will be conducting a comprehensive analysis, prediction, and forecasting of cryptocurrency prices using machine learning with Python. The dataset we will be working with contains historical cryptocurrency price data, and our main objective is to build models that can accurately predict future price movements and daily returns. The first step of the project involves exploring the dataset to gain insights into the structure and contents of the data. We will examine the columns, data types, and any missing values present. After that, we will preprocess the data, handling any missing values and converting data types as needed. This will ensure that our data is clean and ready for analysis. Next, we will proceed with visualizing the dataset to understand the trends and patterns in cryptocurrency prices over time. We will create line plots, box plot, violin plot, and other visualizations to study price movements, trading volumes, and volatility across different cryptocurrencies. These visualizations will help us identify any apparent trends or seasonality in the data. To gain a deeper understanding of the time-series nature of the data, we will conduct time-series analysis year-wise and month-wise. This analysis will involve decomposing the time-series into its individual components like trend, seasonality, and noise. Additionally, we will look for patterns in price movements during specific months to identify any recurring seasonal effects. To enhance our predictions, we will also incorporate technical indicators into our analysis. Technical indicators, such as moving averages, Relative Strength Index (RSI), and Moving Average Convergence Divergence (MACD), provide valuable information about price momentum and market trends. These indicators can be used as additional features in our machine learning models. With a strong foundation of data exploration, visualization, and time-series analysis, we will now move on to building machine learning models for forecasting the closing price of cryptocurrencies. We will utilize algorithms like Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, K-Nearest Neighbors Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, Multi-Layer Perceptron Regression, Lasso Regression, and Ridge Regression to make forecasting. By training our models on historical data, they will learn to recognize patterns and make predictions for future price movements. As part of our machine learning efforts, we will also develop models for predicting daily returns of cryptocurrencies. Daily returns are essential indicators for investors and traders, as they reflect the percentage change in price from one day to the next. By using historical price data and technical indicators as input features, we can build models that forecast daily returns accurately. Throughout the project, we will perform extensive hyperparameter tuning using techniques like Grid Search and Random Search. This will help us identify the best combinations of hyperparameters for each model, optimizing their performance. To validate the accuracy and robustness of our models, we will use various evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared. These metrics will provide insights into the model's ability to predict cryptocurrency prices accurately. In conclusion, this project on cryptocurrency price analysis, prediction, and forecasting is a comprehensive exploration of using machine learning with Python to analyze and predict cryptocurrency price movements. By leveraging data visualization, time-series analysis, technical indicators, and machine learning algorithms, we aim to build accurate and reliable models for predicting future price movements and daily returns. The project's outcomes will be valuable for investors, traders, and analysts looking to make informed decisions in the highly volatile and dynamic world of cryptocurrencies. Through rigorous evaluation and validation, we strive to create robust models that can contribute to a better understanding of cryptocurrency market dynamics and support data-driven decision-making.

Book TIME SERIES ANALYSIS  FORECASTING STOCK PRICE USING MACHINE LEARNING WITH PYTHON GUI

Download or read book TIME SERIES ANALYSIS FORECASTING STOCK PRICE USING MACHINE LEARNING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-02 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stock trading and financial instrument markets offer significant opportunities for wealth creation. The ability to predict stock price movements has long intrigued researchers and investors alike. While some theories, like the Efficient Market Hypothesis, suggest that consistently beating the market is nearly impossible, others contest this viewpoint. Stock price prediction involves forecasting the future value of a given stock. In this project, we focus on the S&P 500 Index, which consists of 500 stocks from various sectors of the US economy and serves as a key indicator of US equities. To tackle this task, we utilize the Yahoo stock price history dataset, which contains 1825 rows and 7 columns including Date, High, Low, Open, Close, Volume, and Adj Close. To enhance our predictions, we incorporate technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, for the forecasting task, we employ various regression algorithms including Linear Regression, Random Forest Regression, Decision Tree Regression, Support Vector Regression, Naïve Bayes Regression, K-Nearest Neighbor Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, MLP Regression, Lasso Regression, and Ridge Regression. These models aim to predict the future Adj Close price of the stock based on historical data. In addition to stock price prediction, we also delve into predicting stock daily returns using machine learning models. We utilize K-Nearest Neighbor Classifier, Random Forest Classifier, Naive Bayes Classifier, Logistic Regression Classifier, Decision Tree Classifier, Support Vector Machine Classifier, LGBM Classifier, Gradient Boosting Classifier, XGB Classifier, MLP Classifier, and Extra Trees Classifier. These models are trained to predict the direction of daily stock returns (positive or negative) based on various features and technical indicators. To assess the performance of these machine learning models, we evaluate several important metrics. Accuracy measures the overall correctness of the predictions, while recall quantifies the ability to correctly identify positive cases (upward daily returns). Precision evaluates the precision of positive predictions, and the F1 score provides a balanced measure of precision and recall. Additionally, we consider macro average, which calculates the average metric value across all classes, and weighted average, which provides a balanced representation considering class imbalances. To enhance the user experience and facilitate data exploration, we develop a graphical user interface (GUI). The GUI is built using PyQt and offers an interactive platform for users to visualize and interact with the data. It provides features such as plotting boundary decisions, visualizing feature distributions and importance, comparing predicted values with true values, displaying confusion matrices, learning curves, model performance, and scalability analysis. The GUI allows users to customize the analysis by selecting different models, time periods, or variables of interest, making it accessible and user-friendly for individuals without extensive programming knowledge. The combination of exploring the dataset, forecasting stock prices, predicting daily returns, and developing a GUI creates a comprehensive framework for analyzing and understanding stock market trends. By leveraging machine learning algorithms and evaluating performance metrics, we gain valuable insights into the accuracy and effectiveness of our predictions. The GUI further enhances the accessibility and usability of the analysis, enabling users to make data-driven decisions and explore the stock market with ease.

Book GOOGLE STOCK PRICE  TIME SERIES ANALYSIS  VISUALIZATION  FORECASTING  AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI

Download or read book GOOGLE STOCK PRICE TIME SERIES ANALYSIS VISUALIZATION FORECASTING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-11 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Google, officially known as Alphabet Inc., is an American multinational technology company. It was founded in September 1998 by Larry Page and Sergey Brin while they were Ph.D. students at Stanford University. Initially, it started as a research project to develop a search engine, but it rapidly grew into one of the largest and most influential technology companies in the world. Google is primarily known for its internet-related services and products, with its search engine being its most well-known offering. It revolutionized the way people access information by providing a fast and efficient search engine that delivers highly relevant results. Over the years, Google expanded its portfolio to include a wide range of products and services, including Google Maps, Google Drive, Gmail, Google Docs, Google Photos, Google Chrome, YouTube, and many more. In addition to its internet services, Google ventured into hardware with products like the Google Pixel smartphones, Google Home smart speakers, and Google Nest smart home devices. It also developed its own operating system called Android, which has become the most widely used mobile operating system globally. Google's success can be attributed to its ability to monetize its services through online advertising. The company introduced Google AdWords, a highly successful online advertising program that enables businesses to display ads on Google's search engine and other websites through its AdSense program. Advertising contributes significantly to Google's revenue, along with other sources such as cloud services, app sales, and licensing fees. The dataset used in this project starts from 19-Aug-2004 and is updated till 11-Oct-2021. It contains 4317 rows and 7 columns. The columns in the dataset are Date, Open, High, Low, Close, Adj Close, and Volume. You can download the dataset from https://viviansiahaan.blogspot.com/2023/06/google-stock-price-time-series-analysis.html. In this project, you will involve technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, you will learn how to perform forecasting based on regression on Adj Close price of Google stock price, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, MLP regression, Lasso regression, and Ridge regression. The machine learning models used to predict Google daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will develop GUI to plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.

Book Future Data and Security Engineering  Big Data  Security and Privacy  Smart City and Industry 4 0 Applications

Download or read book Future Data and Security Engineering Big Data Security and Privacy Smart City and Industry 4 0 Applications written by Tran Khanh Dang and published by Springer. This book was released on 2021-11-14 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 8th International Conference on Future Data and Security Engineering, FDSE 2021, held in Ho Chi Minh City, Vietnam, in November 2021.* The 28 full papers and 8 short were carefully reviewed and selected from 168 submissions. The selected papers are organized into the following topical headings: big data analytics and distributed systems; security and privacy engineering; industry 4.0 and smart city: data analytics and security; blockchain and access control; data analytics and healthcare systems; and short papers: security and data engineering. * The conference was held virtually due to the COVID-19 pandemic.

Book Stock Prediction with Deep Learning

Download or read book Stock Prediction with Deep Learning written by Ethan Shaotran and published by . This book was released on 2018-06-10 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: For centuries, human beings have tried to predict the future, whether it be NBA playoffs, weather, or elections. In this book, we tackle the common misconception that the stock market cannot be predicted, and build a stock prediction algorithm to beat the stock market, using Deep Learning, Data Analysis, and Natural Language Processing techniques.If you're new to Artificial Intelligence and Python, and are curious to learn more, this is a great book for you! Industry experts also have plenty to learn from the variety of methods and techniques used in data collection and manipulation.ABOUT THE AUTHOREthan Shaotran is an AI developer, researcher, and author of "Stock Prediction with Deep Learning". He is the founder of Energize.AI, where he built a financial stock prediction algorithm that outperformed the stock market in 2017. He is currently working on a thought experiment series to raise awareness on AI-related societal challenges within the AI community, regarding regulation and potential moral hazards, as well as autonomous vehicle driving software. Ethan has studied Economics and AI courses from Harvard, Stanford, and USF, is an affiliate with the Harvard Kennedy School's AI Initiative and is a member of the Association for Computing Machinery.

Book Explaining the gold price after the Bretton Woods Agreement using independent variables  An ARIMA model approach

Download or read book Explaining the gold price after the Bretton Woods Agreement using independent variables An ARIMA model approach written by Stefan Heini and published by GRIN Verlag. This book was released on 2015-08-14 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master's Thesis from the year 2014 in the subject Economics - Finance, grade: 1.7, University of Leicester (Center of Management), language: English, abstract: To date, nobody has formulated a comprehensive theorem to determine gold valuation or precious metal prices. Until fairly recently, Eugene Fama’s Efficient Market Hypothesis was the predominant paradigm explaining asset markets but today it is widely acknowledged that markets can be irrational and investors are prone to act irrationally. When trying to explain gold market anomalies, behavioural science approaches can be useful. Phenomena such as herding (‘group think’), ‘safe value bias’ and investors’ ‘excessive extrapolation’ can help explain positive price performance over a certain time. In this dissertation, the author investigates the applicability of a multivariate ARIMA (auto-regressive, integrated, moving average) model to help explain gold price movements from 1973 to 2011. This model uses the gold price and independent variables such as inflation, real interest rates, silver prices, the US dollar money supply (M2), oil prices, the MSCI World index and the S&P 500 as these are linked to gold and/or highly correlated with the gold price. The evaluation criteria were defined as R-squared, mean absolute percentage error (MAPE) and BIC. The model was calculated over so-called ‘normal times’ and times of crises (one political, one financial). The researcher used SPSS’ Expert Modeler to find the best-fitting ARIMA model and to identify the independent variables significantly contributing to the fit of the model. Remarkably, a multivariate ARIMA model using independent variables explained almost twice as much of the variability of the gold price as a univariate ARIMA model using only the gold price. Also, throughout the complete period and during normal times the model explained a much higher percentage of the variability of the gold price than during crises and comparably more of the independent variables contributed significantly to the fit of the model (5 vs. 2). This can be explained by investors’ tendencies to buy gold to preserve their assets (“safe value”), to follow the crowd (“herding”) and to extrapolate past price chart developments. The results show that in an attempt to discern the cause of gold price movements, a multivariate ARIMA model outperforms a univariate ARIMA model significantly. The results of the study furthermore indicate researchers evaluating different methods to fit a time series should consider a multivariate ARIMA model, especially if the independent variables are highly correlated with the dependent variable.

Book The Gold Market

    Book Details:
  • Author : Eric D. Hadar
  • Publisher :
  • Release : 1986
  • ISBN :
  • Pages : 79 pages

Download or read book The Gold Market written by Eric D. Hadar and published by . This book was released on 1986 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Practical Time Series Analysis

Download or read book Practical Time Series Analysis written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2019-09-20 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance

Book Advanced Forecasting with Python

Download or read book Advanced Forecasting with Python written by Joos Korstanje and published by Apress. This book was released on 2021-07-03 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model. Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation of the model, a mathematical transcription of the idea, and Python code that applies the model to an example data set. Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will Learn Carry out forecasting with Python Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing Select the right model for the right use case Who This Book Is For The advanced nature of the later chapters makes the book relevant for applied experts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models.

Book Deep Learning for Time Series Forecasting

Download or read book Deep Learning for Time Series Forecasting written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-08-30 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.

Book Price Forecasting Models for Gold GC F Stock

Download or read book Price Forecasting Models for Gold GC F Stock written by Ton Viet Ta and published by . This book was released on 2021-03-11 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: https: //www.dinhxa.com One-Week Free Trial (subject to change) Do you want to earn up to a 354% annual return on your money by two trades per day on Gold GC=F Stock? Reading this book is the only way to have a specific strategy. This book offers you a chance to trade GC=F Stock at predicted prices. Eight methods for buying and selling GC=F Stock at predicted low/high prices are introduced. These prices are very close to the lowest and highest prices of the stock in a day. All methods are explained in a very easy-to-understand way by using many examples, formulas, figures, and tables. The BIG DATA of the 4135 consecutive trading days (from August 31, 2000 to March 4, 2021) are utilized. The methods do not require any background on mathematics from readers. Furthermore, they are easy to use. Each takes you no more than 30 seconds for calculation to obtain a specific predicted price. The methods are not transient. They cannot be beaten by Mr. Market in several years, even until the stock doubles its current age. They are traits of Mr. Market. The reason is that the author uses the law of large numbers in the probability theory to construct them. In other words, you can use the methods in a long time without worrying about their change. The efficiency of the methods can be checked easily. Just compare the predicted prices with the actual price of the stock while referring to the probabilities of success which are shown clearly in the book (click the LOOK INSIDE button to read more information before buying this book). The book is very useful for Investors who have decided to buy the stock and keep it for a long time (as the strategy of Warren Buffett), or to sell the stock and pay attention to other stocks. The methods will help them to maximize profits for their decision. Day traders who buy and sell the stock many times in a day. Although each method is valid one time per day, the information from the methods will help the traders buy/sell the stock in the second time, third time or more in a day. Beginners to GC=F Stock. The book gives an insight about the behavior of the stock. They will surely gain their knowledge of GC=F Stock after reading the book. Everyone who wants to know about the U.S. stock market. https: //www.dinhxa.com includes a software (app) for stock price forecasting using the methods in this book. The software gives 114 predictions while this book gives 16. One-Week Free Trial (subject to change)

Book REGRESSION  SEGMENTATION  CLUSTERING  AND PREDICTION PROJECTS WITH PYTHON

Download or read book REGRESSION SEGMENTATION CLUSTERING AND PREDICTION PROJECTS WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-02-25 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: TIME-SERIES WEATHER: FORECASTING AND PREDICTION WITH PYTHON Weather data are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, humidity, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project contains weather data for New Delhi, India. This data was taken out from wunderground. It contains various features such as temperature, pressure, humidity, rain, precipitation, etc. The main target is to develop a prediction model accurate enough for forecasting temperature and predicting target variable (condition). Time-series weather forecasting will be done using ARIMA models. The machine learning models used in this project to predict target variable (condition) are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOUSE PRICE: ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON The dataset used in this project is taken from the second chapter of Aurélien Géron's recent book 'Hands-On Machine learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable list of variables and sits at an optimal size between being to toyish and too cumbersome. The data contains information from the 1990 California census. Although it may not help you with predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible introductory dataset for teaching people about the basics of machine learning. The data pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data. Be warned the data aren't cleaned so there are some preprocessing steps required! The columns are as follows: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, and ocean_proximity. The machine learning models used in this project used to perform regression on median_house_value and to predict it as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CUSTOMER PERSONALITY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Customer Personality Analysis is a detailed analysis of a company’s ideal customers. It helps a business to better understand its customers and makes it easier for them to modify products according to the specific needs, behaviors and concerns of different types of customers. Customer personality analysis helps a business to modify its product based on its target customers from different types of customer segments. For example, instead of spending money to market a new product to every customer in the company’s database, a company can analyze which customer segment is most likely to buy the product and then market the product only on that particular segment. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; and Complain = 1 if customer complained in the last 2 years, 0 otherwise. The target in this project is to perform clustering and predicting to summarize customer segments. In this project, you will perform clustering using KMeans to get 4 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON In this project, you will develop a customer segmentation, clustering, and prediction to define marketing strategy. The sample dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables. Following is the Data Dictionary for Credit Card dataset: CUSTID: Identification of Credit Card holder (Categorical); BALANCE: Balance amount left in their account to make purchases; BALANCEFREQUENCY: How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated); PURCHASES: Amount of purchases made from account; ONEOFFPURCHASES: Maximum purchase amount done in one-go; INSTALLMENTSPURCHASES: Amount of purchase done in installment; CASHADVANCE: Cash in advance given by the user; PURCHASESFREQUENCY: How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased); ONEOFFPURCHASESFREQUENCY: How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased); PURCHASESINSTALLMENTSFREQUENCY: How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done); CASHADVANCEFREQUENCY: How frequently the cash in advance being paid; CASHADVANCETRX: Number of Transactions made with "Cash in Advanced"; PURCHASESTRX: Number of purchase transactions made; CREDITLIMIT: Limit of Credit Card for user; PAYMENTS: Amount of Payment done by user; MINIMUM_PAYMENTS: Minimum amount of payments made by user; PRCFULLPAYMENT: Percent of full payment paid by user; and TENURE: Tenure of credit card service for user. In this project, you will perform clustering using KMeans to get 5 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Book Computational Intelligence in Data Mining

Download or read book Computational Intelligence in Data Mining written by Himansu Sekhar Behera and published by Springer. This book was released on 2018-07-03 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on “Computational Intelligence in Data Mining” (ICCIDM), after three successful versions, has reached to its fourth version with a lot of aspiration. The best selected conference papers are reviewed and compiled to form this volume. The proceedings discusses the latest solutions, scientific results and methods in solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. The volume presents a sneak preview into the strengths and weakness of trending applications and research findings in the field of computational intelligence and data mining along with related field.