EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geomicrobiology of the Ocean Crust  The Phylogenetic Diversity  Abundance  and Distribution of Microbial Communities Inhabiting Basalt and Implications for Rock Alteration Processes

Download or read book Geomicrobiology of the Ocean Crust The Phylogenetic Diversity Abundance and Distribution of Microbial Communities Inhabiting Basalt and Implications for Rock Alteration Processes written by and published by . This book was released on 2007 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basaltic ocean crust has the potential to host one of the largest endolithic communities on Earth. This portion of the biosphere, however, remains largely unexplored. In this study, we utilize molecular biological, microscopic, and geochemical tools to gain a better understanding of the geomicrobiology of the ocean crust. Specifically, we examine the phylogenetic diversity of microorganisms inhabiting basaltic lavas, the activities and abundances of these microorganisms, the spatial extent of the biosphere, and the potential effect that microbial activity has on the geochemistry of the ocean crust and overlying water column. Our study demonstrates that young, fresh volcanic lavas near mid-ocean ridges host an incredibly diverse and dense population of microorganisms dominated by Bacteria, quite distinct from the microbial communities found in surrounding deep seawater and hydrothermal vents. Furthermore, these communities may contribute to the elemental cycling of Fe, S, Mn, N, and C in this environment. The inability to definitively identify microorganisms in drill-cores of old (> 15 Ma) ocean crust, however, implies that these once prolific communities may become scarce as the crust ages and moves further away from the ridge axis. Finally, we provide evidence suggesting that these communities are fueled by oxidative alteration reactions occurring in the basaltic crust.

Book Geomicrobiology of the Ocean Crust  the Phylogenetic Diversity  Abundance  and Distribution of Microbial Communities Inhabiting Basalt and Implications for Rock Alteration Processes

Download or read book Geomicrobiology of the Ocean Crust the Phylogenetic Diversity Abundance and Distribution of Microbial Communities Inhabiting Basalt and Implications for Rock Alteration Processes written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007.

Book Recent Advances in Geomicrobiology of the Ocean Crust

Download or read book Recent Advances in Geomicrobiology of the Ocean Crust written by Beth N. Orcutt and published by Frontiers Media SA. This book was released on 2017-09-29 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Igneous oceanic crust is one of the largest potential habitats for life on earth, and microbial activity supported by rock-water-microbe reactions in this environment can impact global biogeochemical cycles. However, our understanding of the microbiology of this system, especially the subsurface “deep biosphere” component of it, has traditionally been limited by sample availability and quality. Over the past decade, several major international programs (such as the Center for Dark Energy Biosphere Investigations, the current International Ocean Discovery Program and its predecessor Integrated Ocean Drilling Program, and the Deep Carbon Observatory) have focused on advancing our understanding of life in this cryptic, yet globally relevant, biosphere. Additionally, many field and laboratory research programs are examining hydrothermal vent systems –a seafloor expression of seawater that has been thermally and chemically altered in subseafloor crust – and the microbial communities supported by these mineral-rich fluids. The Frontiers in Microbiology 3 September 2017 | Recent Advances in Geomicrobiology of the Ocean Crust papers in this special issue bring together recent discoveries of microbial presence, diversity and activity in these dynamic ocean environments. Cumulatively, the articles in this special issue serve as a tribute to the late Dr. Katrina J. Edwards, who was a pioneer and profound champion of studying microbes that “rust the crust”. This special issue volume serves as a foundation for the continued exploration of the subsurface ocean crust deep biosphere.

Book Prokaryotes Associated with Marine Crust

Download or read book Prokaryotes Associated with Marine Crust written by Olivia Underwood Mason and published by . This book was released on 2009 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust; however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. In particular, the basalt layer has high permeabilities which allows for infiltration and circulation of large volumes of seawater. Seawater interacts with the host rocks and can result in abiotic hydrogen, methane, and other low molecular weight carbon compounds. Endoliths residing in this environment are; therefore, uniquely poised to take advantage of the by-products of this reaction. Whether the resident prokaryotic communities in lithic crust utilize abiotically produced volatiles, such as methane, is unknown. Further, little is known about the global distribution of basalt endoliths. To date, gabbroic microflora have not yet been examined. The gabbroic layer may; therefore, harbor great microbial and metabolic diversity. To this end molecular and bioinformatics techniques were used to examine the microbial communities associated with basalt and gabbro. Cloning and sequencing of 16S rDNA from basalt and gabbro samples revealed that a disparate microbial communities resides in these two environments. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Despite the differences in the microbial communities in basalt and gabbro, analysis of functional genes using a microarray revealed overlapping metabolic processes. Genes coding for carbon fixation, methane generation and oxidation, nitrogen fixation, and denitrification were present in both rock types. None of these metabolic processes have been reported previously in basalt or gabbro hosted environments. Taken together, these findings provide significant insight into the possible biogeochemical cycling occurring in marine crust.

Book Extremophiles Handbook

    Book Details:
  • Author : Koki Horikoshi
  • Publisher : Springer Science & Business Media
  • Release : 2010-12-08
  • ISBN : 4431538976
  • Pages : 1277 pages

Download or read book Extremophiles Handbook written by Koki Horikoshi and published by Springer Science & Business Media. This book was released on 2010-12-08 with total page 1277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Extremophiles Handbook brings together the rapidly growing and often scattered information on microbial life in the whole range of extreme environments. This book will be a useful reference for finding clues to the origin of life and for exploring the biotechnology potential of these fascinating organisms.

Book Encyclopedia of Marine Geosciences

Download or read book Encyclopedia of Marine Geosciences written by Jan Harff and published by Springer. This book was released on 2021-01-14 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: Globally growing demand of energy and mineral resources, reliable future projection of climate processes and the protection of coasts to mitigate the threats of disasters and hazards require a comprehensive understanding of the structure, ongoing processes and genesis of the marine geosphere. Beyond the “classical” research fields in marine geology in current time more general concepts have been evolved integrating marine geophysics, hydrography, marine biology, climatology and ecology. As an umbrella the term “marine geosciences” has been broadly accepted for this new complex field of research and the solutions of practical tasks in the marine realm. The “Encyclopedia of Marine Geosciences” comprises the current knowledge in marine geosciences whereby not only basic but also applied and technical sciences are covered. Through this concept a broad scale of users in the field of marine sciences and techniques is addressed from students and scholars in academia to engineers and decision makers in industry and politics.

Book Microbial Diversity of Fault Scarps and Marine Sediment on the Ridge Flank Abyssal Hill Terrain of the East Pacific Rise

Download or read book Microbial Diversity of Fault Scarps and Marine Sediment on the Ridge Flank Abyssal Hill Terrain of the East Pacific Rise written by Christopher Joseph Ehrhardt and published by . This book was released on 2007 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrothermal fluids circulating in basaltic oceanic crust and the microbial communities contained within them are significant components of the chemistry, biology, and mineral geochemistry of the deep ocean. Beneath the flanks of the global mid-ocean ridge system these hydrothermal reservoirs constitute a vast and virtually unexplored high temperature marine habitat. Geomicrobiological research on these subseafloor microbial habitats has been limited by the paucity of known seafloor hydrothermal sites on ridge flanks and by the absence of non-destructive molecular techniques that can be used to study microbe-mineral interactions within these systems.

Book Microbial Diversity  Metabolic Potential  and Transcriptional Activity Along the Inner Continental Shelf of the Northeast Pacific Ocean

Download or read book Microbial Diversity Metabolic Potential and Transcriptional Activity Along the Inner Continental Shelf of the Northeast Pacific Ocean written by Anthony D. Bertagnolli and published by . This book was released on 2012 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continental shelves located along eastern boundary currents occupy relatively small volumes of the world's oceans, yet are responsible for a large proportion of global primary production. The Oregon coast is among these ecosystems. Recent analyses of dissolved oxygen at shallow depths in the water column has suggested increasing episodes of hypoxia and anoxia, events that are detrimental to larger macro-faunal species. Microbial communities, however, are metabolically diverse, capable of utilizing alternative electron donors and acceptors, and can withstand transient periods of low dissolved oxygen. Understanding the phylogenetic and metabolic diversity of microorganisms in these environments is important for assessing the impact hypoxic events have on local and global biogeochemistry. Several molecular ecology tools were used to answer questions about the distribution patterns and activities of microorganisms residing along the coast of Oregon in this dissertation. Ribosomal rRNA fingerprinting and sequence analyses of samples collected during 2007-2008 suggested that bacterial community structure was not substantially influenced by changes in dissolved oxygen. However, substantial depth dependent changes were observed, with samples collected in the bottom boundary layer (BBL) displaying significant differences from those collected in the surface layer. Phylogenetic analyses of bacterial rRNA genes revealed novel phylotypes associated with this area of the water column, including groups with close evolutionary relationships to putative or characterized sulfur oxidizing bacteria (SOB). Analysis of metagenomes and metatranscriptomes collected during 2009 suggested increasing abundances of chemolithoautrophic organisms and their activities in the BBL. Thaumarchaea displayed significant depth dependent increases during the summer, and were detected at maximal frequencies during periods of hypoxia, suggesting that nitrification maybe influenced by local changes in dissolved oxygen. Metagenomic analysis of samples collected from 2010 revealed substantial variability in the metabolic potential of the microbial communities from different water masses. Samples collected during the spring, prior to upwelling clustered independently of those collected during the summer, during a period of upwelling, and did not display any clear stratification. Samples collected during the summer did cluster based on depth, consistent with previous observations, and increases in the relative abundances of chemolithotrophic gene suites were observed in the BBL during stratified conditions, suggesting that the metabolic potential for these processes is a repeatable feature along the Oregon coast. Overall, these observations suggest that depth impacts microbial community diversity, metabolic potential, and transcriptional activity in shallow areas of the Northeast Pacific Ocean. The increase in lithotrophic genes and transcripts in the BBL suggests that this microbial community includes many organisms that are able to use inorganic electron donors for respiration. We speculate that the dissolved organic material in the BBL is semi-labile and not available for immediate oxidation, favoring the growth for microorganisms that are able to use alternative electron donors.

Book Carbon in Earth s Interior

Download or read book Carbon in Earth s Interior written by Craig E. Manning and published by John Wiley & Sons. This book was released on 2020-04-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.

Book Fungi in Biogeochemical Cycles

Download or read book Fungi in Biogeochemical Cycles written by Geoffrey Michael Gadd and published by Cambridge University Press. This book was released on 2006-05-04 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fungi play important roles in the cycling of elements in the biosphere but are frequently neglected within microbiological and geochemical research spheres. Symbiotic mycorrhizal fungi are responsible for major transformations and redistribution of inorganic nutrients, while free-living fungi have major roles in the decomposition of organic materials, including xenobiotics. Fungi are also major biodeterioration agents of stone, wood, plaster, cement and other building materials, and are important components of rock-inhabiting microbial communities. The aim of this book is to promote further understanding of the key roles that free-living and symbiotic fungi (in mycorrhizas and lichens) play in the biogeochemical cycling of elements, the chemical and biological mechanisms that are involved, and their environmental and biotechnological significance. Where appropriate, relationships with bacteria are also discussed to highlight the dynamic interactions that can exist between these major microbial groups and their integrated function in several kinds of habitat.

Book The Metal Driven Biogeochemistry of Gaseous Compounds in the Environment

Download or read book The Metal Driven Biogeochemistry of Gaseous Compounds in the Environment written by Peter M.H. Kroneck and published by Springer. This book was released on 2014-12-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: MILS-14 provides a most up-to-date view of the exciting biogeochemistry of gases in our environment as driven mostly by microorganisms. These employ a machinery of sophisticated metalloenzymes, where especially transition metals (such as Fe, Ni, Cu, Mo, W) play a fundamental role, that is, in the activation, transformation and syntheses of gases like dihydrogen, methane, carbon monoxide, acetylene and those of the biological nitrogen and sulfur cycles. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment is a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry and environmental biochemistry. All this is covered in an authoritative manner in 11 stimulating chapters, written by 26 internationally recognized experts and supported by nearly 1200 references, informative tables and about 100 illustrations (two thirds in color). MILS-14 also provides excellent information for teaching. Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper and molybdenum enzymes and their impact on the biogeochemical cycles of nitrogen and sulfur. Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical and spectroscopic techniques.

Book Deep Subsurface Microbiology

Download or read book Deep Subsurface Microbiology written by Andreas Teske and published by Frontiers Media SA. This book was released on 2015-07-01 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth's subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.

Book Subseafloor Biosphere Linked to Hydrothermal Systems

Download or read book Subseafloor Biosphere Linked to Hydrothermal Systems written by Jun-ichiro Ishibashi and published by Springer. This book was released on 2015-01-10 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the comprehensive volume of the TAIGA (“a great river ” in Japanese) project. Supported by the Japanese government, the project examined the hypothesis that the subseafloor fluid advection system (subseafloor TAIGA) can be categorized into four types, TAIGAs of sulfur, hydrogen, carbon (methane), and iron, according to the most dominant reducing substance, and the chemolithoautotrophic bacteria/archaea that are inextricably associated with respective types of TAIGAs which are strongly affected by their geological background such as surrounding host rocks and tectonic settings. Sub-seafloor ecosystems are sustained by hydrothermal circulation or TAIGA that carry chemical energy to the chemosynthetic microbes living in an extreme environment. The results of the project have been summarized comprehensively in 50 chapters, and this book provides an overall introduction and relevant topics on the mid-ocean ridge system of the Indian Ocean and on the arc-backarc systems of the Southern Mariana Trough and Okinawa Trough.

Book Biogeochemical Cycles

    Book Details:
  • Author : Katerina Dontsova
  • Publisher : John Wiley & Sons
  • Release : 2020-04-14
  • ISBN : 1119413303
  • Pages : 336 pages

Download or read book Biogeochemical Cycles written by Katerina Dontsova and published by John Wiley & Sons. This book was released on 2020-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf

Book Characterization  Modeling  Monitoring  and Remediation of Fractured Rock

Download or read book Characterization Modeling Monitoring and Remediation of Fractured Rock written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2021-01-29 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Book Ehrlich s Geomicrobiology

Download or read book Ehrlich s Geomicrobiology written by Henry Lutz Ehrlich and published by CRC Press. This book was released on 2015-10-15 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in geomicrobiology have progressed at an accelerated pace in recent years. Ehrlich's Geomicrobiology, Sixth Edition surveys various aspects of the field, including the microbial role in elemental cycling and in the formation and degradation of minerals and fossil fuels. Unlike the fifth edition, the sixth includes many expert contributors

Book Biosignatures for Astrobiology

Download or read book Biosignatures for Astrobiology written by Barbara Cavalazzi and published by Springer. This book was released on 2018-10-01 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at providing a brief but broad overview of biosignatures. The topics addressed range from prebiotic signatures in extraterrestrial materials to the signatures characterising extant life as well as fossilised life, biosignatures related to space, and space flight instrumentation to detect biosignatures either in situ or from orbit. The book ends with philosophical reflections on the implications of life elsewhere. In the 15 chapters written by an interdisciplinary team of experts, it provides both detailed explanations on the nature of biosignatures as well as useful case studies showing how they are used and identified in ancient rocks, for example. One case study addresses the controversial finding of traces of fossil life in a meteorite from Mars. The book will be of interest not only to astrobiologists but also to terrestrial paleontologists as well as any reader interested in the prospects of finding a second example of life on another planet.