EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometry of Moment Spaces

Download or read book Geometry of Moment Spaces written by Samuel Karlin and published by American Mathematical Soc.. This book was released on 1953 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometry of Moment Spaces

Download or read book Geometry of Moment Spaces written by Samuel Karlin and published by . This book was released on 1967 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometry of Moment Spaces

Download or read book Geometry of Moment Spaces written by Samuel Karlin and published by . This book was released on 1958 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Moment Maps and Combinatorial Invariants of Hamiltonian Tn spaces

Download or read book Moment Maps and Combinatorial Invariants of Hamiltonian Tn spaces written by Victor Guillemin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.

Book Geometry of Moment Spaces

Download or read book Geometry of Moment Spaces written by Samuel Karlin and published by . This book was released on 1972 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Poisson Geometry in Mathematics and Physics

Download or read book Poisson Geometry in Mathematics and Physics written by Giuseppe Dito and published by American Mathematical Soc.. This book was released on 2008 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book The Shape of Inner Space

Download or read book The Shape of Inner Space written by Shing-Tung Yau and published by Il Saggiatore. This book was released on 2010-09-07 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading mind behind the mathematics of string theory discusses how geometry explains the universe we see. Illustrations.

Book An Introduction to Symplectic Geometry

Download or read book An Introduction to Symplectic Geometry written by Rolf Berndt and published by American Mathematical Soc.. This book was released on 2001 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

Book Geometry of Grief

Download or read book Geometry of Grief written by Michael Frame and published by University of Chicago Press. This book was released on 2021-09-08 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry -- Grief -- Beauty -- Story -- Fractal -- Beyond -- Appendix: More Math.

Book Geometry and Statistics

Download or read book Geometry and Statistics written by and published by Academic Press. This book was released on 2022-07-15 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and Statistics, Volume 46 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Geometry and Statistics

Book Moments in Mathematics

Download or read book Moments in Mathematics written by Henry J. Landau and published by American Mathematical Soc.. This book was released on 1987 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Function theory, spectral decomposition of operators, probability, approximation, electrical and mechanical inverse problems, prediction of stochastic processes, the design of algorithms for signal-processing VLSI chips--these are among a host of important theoretical and applied topics illuminated by the classical moment problem. To survey some of these ramifications and the research which derives from them, the AMS sponsored the Short Course Moments in Mathematics at the Joint Mathematics Meetings, held in San Antonio, Texas, in January 1987. This volume contains the six lectures presented during that course. The papers are likely to find a wide audience, for they are expository, but nevertheless lead the reader to topics of current research. In his paper, Henry J. Landau sketches the main ideas of past work related to the moment problem by such mathematicians as Caratheodory, Herglotz, Schur, Riesz, and Krein and describes the way the moment problem has interconnected so many diverse areas of research. J. H. B. Kemperman examines the moment problem from a geometric viewpoint which involves a certain natural duality method and leads to interesting applications in linear programming, measure theory, and dilations. Donald Sarason first provides a brief review of the theory of unbounded self-adjoint operators then goes on to sketch the operator-theoretic treatment of the Hamburger problem and to discuss Hankel operators, the Adamjan-Arov-Krein approach, and the theory of unitary dilations. Exploring the interplay of trigonometric moment problems and signal processing, Thomas Kailath describes the role of Szego polynomials in linear predictive coding methods, parallel implementation, one-dimensional inverse scattering problems, and the Toeplitz moment matrices. Christian Berg contrasts the multi-dimensional moment problem with the one-dimensional theory and shows how the theory of the moment problem may be viewed as part of harmonic analysis on semigroups. Starting from a historical survey of the use of moments in probability and statistics, Persi Diaconis illustrates the continuing vitality of these methods in a variety of recent novel problems drawn from such areas as Wiener-Ito integrals, random graphs and matrices, Gibbs ensembles, cumulants and self-similar processes, projections of high-dimensional data, and empirical estimation.

Book Spacetime and Geometry

    Book Details:
  • Author : Sean M. Carroll
  • Publisher : Cambridge University Press
  • Release : 2019-08-08
  • ISBN : 1108488390
  • Pages : 529 pages

Download or read book Spacetime and Geometry written by Sean M. Carroll and published by Cambridge University Press. This book was released on 2019-08-08 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.

Book Library of Congress Subject Headings

Download or read book Library of Congress Subject Headings written by Library of Congress. Cataloging Policy and Support Office and published by . This book was released on 2009 with total page 1924 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Library of Congress Subject Headings

Download or read book Library of Congress Subject Headings written by Library of Congress and published by . This book was released on 2013 with total page 1480 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shape

    Book Details:
  • Author : Jordan Ellenberg
  • Publisher : Penguin
  • Release : 2021-05-25
  • ISBN : 1984879065
  • Pages : 481 pages

Download or read book Shape written by Jordan Ellenberg and published by Penguin. This book was released on 2021-05-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.

Book Variational Methods in Statistics

Download or read book Variational Methods in Statistics written by Rustagi and published by Academic Press. This book was released on 1976-03-15 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Methods in Statistics