EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric Variational Problems Related to Symplectic Geometry

Download or read book Geometric Variational Problems Related to Symplectic Geometry written by William P. Minicozzi (II.) and published by . This book was released on 1994 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geometries in Interaction

Download or read book Geometries in Interaction written by Y. Eliashberg and published by Birkhäuser. This book was released on 2012-12-06 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decades of the 20th century tremendous progress has been achieved in geometry. The discovery of deep interrelations between geometry and other fields including algebra, analysis and topology has pushed it into the mainstream of modern mathematics. This Special Issue of Geometric And Functional Analysis (GAFA) in honour of Mikhail Gromov contains 14 papers which give a wide panorama of recent fundamental developments in modern geometry and its related subjects. The book is a collection of important results and an enduring source of new ideas for researchers and students in a broad spectrum of directions related to all aspects of geometry and its applications to functional analysis, PDE, analytic number theory and physics. This is a reprint from GAFA, Vol. 5 (1995), No. 2., enlarged by a short biography of Mikhail Gromov and a list of his publications.

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book The Geometry of Ordinary Variational Equations

Download or read book The Geometry of Ordinary Variational Equations written by Olga Krupkova and published by Springer. This book was released on 2006-11-14 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.

Book Symplectic Geometry and Mathematical Physics

Download or read book Symplectic Geometry and Mathematical Physics written by P. Donato and published by Springer Science & Business Media. This book was released on 1991-12 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference "Colloque de Goometrie Symplectique et Physique Mathematique" which was held in Aix-en-Provence (France), June 11-15, 1990, in honor of Jean-Marie Souriau. The conference was one in the series of international meetings of the Seminaire Sud Rhodanien de Goometrie, an organization of geometers and mathematical physicists at the Universities of Avignon, Lyon, Mar seille, and Montpellier. The scientific interests of Souriau, one of the founders of geometric quantization, range from classical mechanics (symplectic geometry) and quantization problems to general relativity and astrophysics. The themes of this conference cover "only" the first two of these four areas. The subjects treated in this volume could be classified in the follow ing way: symplectic and Poisson geometry (Arms-Wilbour, Bloch-Ratiu, Brylinski-Kostant, Cushman-Sjamaar, Dufour, Lichnerowicz, Medina, Ouzilou), classical mechanics (Benenti, Holm-Marsden, Marle) , particles and fields in physics (Garcia Perez-Munoz Masque, Gotay, Montgomery, Ne'eman-Sternberg, Sniatycki) and quantization (Blattner, Huebschmann, Karasev, Rawnsley, Roger, Rosso, Weinstein). However, these subjects are so interrelated that a classification by headings such as "pure differential geometry, applications of Lie groups, constrained systems in physics, etc. ," would have produced a completely different clustering! The list of authors is not quite identical to the list of speakers at the conference. M. Karasev was invited but unable to attend; C. Itzykson and M. Vergne spoke on work which is represented here only by the title of Itzykson's talk (Surfaces triangulees et integration matricielle) and a summary of Vergne's talk.

Book Periodic Solutions of Hamiltonian Systems and Related Topics

Download or read book Periodic Solutions of Hamiltonian Systems and Related Topics written by P.H. Rabinowitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a NATO Advanced Research Workshop on Periodic Solutions of Hamiltonian Systems held in II Ciocco, Italy on October 13-17, 1986. It also contains some papers that were an outgrowth of the meeting. On behalf of the members of the Organizing Committee, who are also the editors of these proceedings, I thank all those whose contributions made this volume possible and the NATO Science Committee for their generous financial support. Special thanks are due to Mrs. Sally Ross who typed all of the papers in her usual outstanding fashion. Paul H. Rabinowitz Madison, Wisconsin April 2, 1987 xi 1 PERIODIC SOLUTIONS OF SINGULAR DYNAMICAL SYSTEMS Antonio Ambrosetti Vittorio Coti Zelati Scuola Normale Superiore SISSA Piazza dei Cavalieri Strada Costiera 11 56100 Pisa, Italy 34014 Trieste, Italy ABSTRACT. The paper contains a discussion on some recent advances in the existence of periodic solutions of some second order dynamical systems with singular potentials. The aim of this paper is to discuss some recent advances in th.e existence of periodic solutions of some second order dynamical systems with singular potentials.

Book Differential Equations  La Pietra 1996

Download or read book Differential Equations La Pietra 1996 written by Peter D. Lax and published by American Mathematical Soc.. This book was released on 1999 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 11 papers discuss analysis, partial differential equations, applied mathematics, and scientific computing, focusing on the work of Peter Lax and Louis Nirenberg, whose 70th birthdays occasioned the conference. Specific topics include viscosity solutions for the porous medium equation, holomorphic curves in contact dynamics, and minimizing volume among Lagrangian submanifolds. No index. Member prices are $31 for institutions and $23 or individuals. Annotation copyrighted by Book News, Inc., Portland, OR.

Book Geometric Analysis

    Book Details:
  • Author : Hubert L. Bray
  • Publisher : American Mathematical Soc.
  • Release : 2016-05-18
  • ISBN : 1470423138
  • Pages : 457 pages

Download or read book Geometric Analysis written by Hubert L. Bray and published by American Mathematical Soc.. This book was released on 2016-05-18 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace–Beltrami operators.

Book Gauge Theory and Symplectic Geometry

Download or read book Gauge Theory and Symplectic Geometry written by Jacques Hurtubise and published by Springer Science & Business Media. This book was released on 1997-03-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gauge theory, symplectic geometry and symplectic topology are important areas at the crossroads of several mathematical disciplines. The present book, with expertly written surveys of recent developments in these areas, includes some of the first expository material of Seiberg-Witten theory, which has revolutionised the subjects since its introduction in late 1994. Topics covered include: introductions to Seiberg-Witten theory, to applications of the S-W theory to four-dimensional manifold topology, and to the classification of symplectic manifolds; an introduction to the theory of pseudo-holomorphic curves and to quantum cohomology; algebraically integrable Hamiltonian systems and moduli spaces; the stable topology of gauge theory, Morse-Floer theory; pseudo-convexity and its relations to symplectic geometry; generating functions; Frobenius manifolds and topological quantum field theory.

Book The Geometry of the Group of Symplectic Diffeomorphism

Download or read book The Geometry of the Group of Symplectic Diffeomorphism written by Leonid Polterovich and published by Birkhäuser. This book was released on 2012-12-06 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.

Book Lie Groups  Differential Equations  and Geometry

Download or read book Lie Groups Differential Equations and Geometry written by Giovanni Falcone and published by Springer. This book was released on 2017-09-19 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

Book Geometric Asymptotics

    Book Details:
  • Author : Victor Guillemin
  • Publisher : American Mathematical Soc.
  • Release : 1990
  • ISBN : 0821816330
  • Pages : 500 pages

Download or read book Geometric Asymptotics written by Victor Guillemin and published by American Mathematical Soc.. This book was released on 1990 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.

Book Lectures on Geometric Variational Problems

Download or read book Lectures on Geometric Variational Problems written by Seiki Nishikawa and published by Springer. This book was released on 1996-02 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of geometric variational problems, that is, nonlinear problems arising in geometry and topology from the point of view of global analysis, has developed very rapidly in the last decade. It was therefore felt timely to produce a set of presentations on this subject in which leading experts would provide general survey of current research from the fundamentals to the most recent results with a view to future research. This volume will interest both mature researchers and graduate students concerned with gauge theory and low dimensional topology, theory of harmonic maps, and minimal surfaces and minimal submanifolds in Riemannian manifolds.

Book Handbook of Differential Geometry  Volume 1

Download or read book Handbook of Differential Geometry Volume 1 written by F.J.E. Dillen and published by Elsevier. This book was released on 1999-12-16 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.

Book Contact and Symplectic Geometry

Download or read book Contact and Symplectic Geometry written by Charles Benedict Thomas and published by Cambridge University Press. This book was released on 1996-09-28 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents some of the lectures and research during the special programme held at the Newton Institute in 1994. The two parts each contain a mix of substantial expository articles and research papers that outline important and topical ideas. Many of the results have not been presented before, and the lectures on Floer homology is the first avaliable in book form.Symplectic methods are one of the most active areas of research in mathematics currently, and this volume will attract much attention.

Book Introduction to Global Variational Geometry

Download or read book Introduction to Global Variational Geometry written by Demeter Krupka and published by Springer. This book was released on 2015-01-13 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational sequence theory and its consequences for the global inverse problem (cohomology conditions)- examples of variational functionals of mathematical physics. Complete formulations and proofs of all basic assertions are given, based on theorems of global analysis explained in the Appendix.

Book Harmonic Morphisms  Harmonic Maps and Related Topics

Download or read book Harmonic Morphisms Harmonic Maps and Related Topics written by Christopher Kum Anand and published by CRC Press. This book was released on 1999-10-13 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of harmonic morphisms is relatively new but has attracted a huge worldwide following. Mathematicians, young researchers and distinguished experts came from all corners of the globe to the City of Brest - site of the first, international conference devoted to the fledgling but dynamic field of harmonic morphisms. Harmonic Morphisms, Harmonic Maps, and Related Topics reports the proceedings of that conference, forms the first work primarily devoted to harmonic morphisms, bringing together contributions from the founders of the subject, leading specialists, and experts in other related fields. Starting with "The Beginnings of Harmonic Morphisms," which provides the essential background, the first section includes papers on the stability of harmonic morphisms, global properties, harmonic polynomial morphisms, Bochner technique, f-structures, symplectic harmonic morphisms, and discrete harmonic morphisms. The second section addresses the wider domain of harmonic maps and contains some of the most recent results on harmonic maps and surfaces. The final section highlights the rapidly developing subject of constant mean curvature surfaces. Harmonic Morphisms, Harmonic Maps, and Related Topics offers a coherent, balanced account of this fast-growing subject that furnishes a vital reference for anyone working in the field.