EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric Programming for Design and Cost Optimization 2nd edition

Download or read book Geometric Programming for Design and Cost Optimization 2nd edition written by Robert Creese and published by Springer Nature. This book was released on 2022-05-31 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric programming is used for design and cost optimization, the development of generalized design relationships, cost ratios for specific problems, and profit maximization. The early pioneers of the process - Zener, Duffin, Peterson, Beightler, Wilde, and Phillips -- played important roles in the development of geometric programming. There are three major areas: 1) Introduction, History, and Theoretical Fundamentals, 2) Applications with Zero Degrees of Difficulty, and 3) Applications with Positive Degrees of Difficulty. The primal-dual relationships are used to illustrate how to determine the primal variables from the dual solution and how to determine additional dual equations when the degrees of difficulty are positive. A new technique for determining additional equations for the dual, Dimensional Analysis, is demonstrated. The various solution techniques of the constrained derivative approach, the condensation of terms, and dimensional analysis are illustrated with example problems. The goal of this work is to have readers develop more case studies to further the application of this exciting tool. Table of Contents: Introduction / Brief History of Geometric Programming / Theoretical Considerations / The Optimal Box Design Case Study / Trash Can Case Study / The Open Cargo Shipping Box Case Study / Metal Casting Cylindrical Riser Case Study / Inventory Model Case Study / Process Furnace Design Case Study / Gas Transmission Pipeline Case Study / Profit Maximization Case Study / Material Removal/Metal Cutting Economics Case Study / Journal Bearing Design Case Study / Metal Casting Hemispherical Top Cylindrical Side Riser\\Case Study / Liquefied Petroleum Gas (LPG) Cylinders Case Study / Material Removal/Metal Cutting Economics with Two Constraints / The Open Cargo Shipping Box with Skids / Profit Maximization Considering Decreasing Cost Functions of Inventory Policy / Summary and Future Directions / Thesis and Dissertations on Geometric Programming

Book Geometric Programming for Design Equation Development and Cost Profit Optimization  with illustrative case study problems and solutions   Third Edition

Download or read book Geometric Programming for Design Equation Development and Cost Profit Optimization with illustrative case study problems and solutions Third Edition written by Robert Creese and published by Springer Nature. This book was released on 2022-05-31 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Programming is used for cost minimization, profit maximization, obtaining cost ratios, and the development of generalized design equations for the primal variables. The early pioneers of geometric programming—Zener, Duffin, Peterson, Beightler, Wilde, and Phillips—played important roles in its development. Five new case studies have been added to the third edition. There are five major sections: (1) Introduction, History and Theoretical Fundamentals; (2) Cost Minimization Applications with Zero Degrees of Difficulty; (3) Profit Maximization Applications with Zero Degrees of Difficulty; (4) Applications with Positive Degrees of Difficulty; and (5) Summary, Future Directions, and Geometric Programming Theses & Dissertations Titles. The various solution techniques presented are the constrained derivative approach, condensation of terms approach, dimensional analysis approach, and transformed dual approach. A primary goal of this work is to have readers develop more case studies and new solution techniques to further the application of geometric programming.

Book Systems Engineering

Download or read book Systems Engineering written by Giulio Lorenzini and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered. Classical fin theory tried to reduce the coupled heat transfer problem to a one-dimensional problem by defining an average temperature of the fin and writing equations using this parameter. However, it was shown that this approach cannot be used because of the effects of two-dimensional heat transfer, especially in the presence of short fins. CFD codes offer the possibility to consider bi-dimensional (and more generally, three-dimensional) effects and then a more real approach to the physic phenomena of finned surface's heat exchange. A commercial CFD code was used to analyse the case of heat exchange in presence of T-shaped fins, following an approach suggested by Bejan's Constructal Theory. The comparative results showed a significant agreement with previous research taken as a reference, and this result allows for the application of this approach to a wider range of systems. T-shaped optimized fin geometry is the starting point for further research. Starting from the optimal results (T-shape optimized fins), we show the trend of the assessment parameter (the dimensionless conductance) in function of the angle a between the two horizontal arms of the fin. A value for a, 90°

Book Geometric Programming for Design and Cost Optimization

Download or read book Geometric Programming for Design and Cost Optimization written by Robert Creese and published by Springer Nature. This book was released on 2009-10-11 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric programming is used for design and cost optimization and the development of generalized design relationships and cost rations for specific problems. The early pioneers of the process, Zener, Duffin, Peterson, Beightler, and Wilde, played important roles in the development of geometric programming. The theory of geometric programming is presented and 10 examples are presented and solved in detail. The examples illustrate some of the difficulties encountered in typical problems and techniques for overcoming these difficulties. The primal-dual relationships are used to illustrate how to determine the primal variables from the dual solution. These primal-dual relationships can be used to determine additional dual equations when the degrees of difficulty are positive. The goal of this work is to have readers develop more case studies to further the application of this exciting mathematical tool. Table of Contents: Introduction / Brief History of Geometric Programming / Theoretical Considerations / Trash Can Case Study / Open Cargo Shipping Box Case Study / Metal Casting Cylindrical Riser Case Study / Process Furnace Design Case Study / Gas Transmission Pipeline Case Study / Journal Bearing Design Case Study / Metal Casting Hemispherical Top Cylindrical Side Riser / Liquefied Petroleum Gas(LPG) Cylinders Case Study / Material Removal/Metal Cutting Economics Case Study / Summary and Future Directions

Book Geometric Programming for Design Equation Development and Cost Profit Optimization

Download or read book Geometric Programming for Design Equation Development and Cost Profit Optimization written by Robert C. Creese and published by Morgan & Claypool. This book was released on 2016-12-27 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Programming is used for cost minimization, profit maximization, obtaining cost ratios, and the development of generalized design equations for the primal variables. The early pioneers of geometric programming--Zener, Duffin, Peterson, Beightler, Wilde, and Phillips--played important roles in its development. Five new case studies have been added to the third edition. There are five major sections: (1) Introduction, History and Theoretical Fundamentals; (2) Cost Minimization Applications with Zero Degrees of Difficulty; (3) Profit Maximization Applications with Zero Degrees of Difficulty; (4) Applications with Positive Degrees of Difficulty; and (5) Summary, Future Directions, and Geometric Programming Theses & Dissertations Titles. The various solution techniques presented are the constrained derivative approach, condensation of terms approach, dimensional analysis approach, and transformed dual approach. A primary goal of this work is to have readers develop more case studies and new solution techniques to further the application of geometric programming.

Book Geometric Programming for Design and Cost Optimization

Download or read book Geometric Programming for Design and Cost Optimization written by Robert C. Creese and published by Morgan & Claypool Publishers. This book was released on 2009-10-26 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are numerous techniques of optimization methods such as linear programming, dynamic programming, geometric programming, queuing theory, statistical analysis, risk analysis, Monte Carlo simulation, numerous search techniques, etc. Geometric programming is one of the better tools that can be used to achieve the design requirements and minimal cost objective. Geometric programming can be used not only to provide a specific solution to a problem, but it also can in many instances give a general solution with specific design relationships. These design relationships based upon the design constants can then be used for the optimal solution without having to resolve the original problem. This fascinating characteristic appears to be unique to geometric programming. The purpose of this text is to introduce manufacturing engineers, design engineers, manufacturing technologists, cost engineers, project managers, industrial consultants and finance managers to the topic of geometric programming.

Book Advances in Geometric Programming

Download or read book Advances in Geometric Programming written by Mordecai Avriel and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1961, C. Zener, then Director of Science at Westinghouse Corpora tion, and a member of the U. S. National Academy of Sciences who has made important contributions to physics and engineering, published a short article in the Proceedings of the National Academy of Sciences entitled" A Mathe matical Aid in Optimizing Engineering Design. " In this article Zener considered the problem of finding an optimal engineering design that can often be expressed as the problem of minimizing a numerical cost function, termed a "generalized polynomial," consisting of a sum of terms, where each term is a product of a positive constant and the design variables, raised to arbitrary powers. He observed that if the number of terms exceeds the number of variables by one, the optimal values of the design variables can be easily found by solving a set of linear equations. Furthermore, certain invariances of the relative contribution of each term to the total cost can be deduced. The mathematical intricacies in Zener's method soon raised the curiosity of R. J. Duffin, the distinguished mathematician from Carnegie Mellon University who joined forces with Zener in laying the rigorous mathematical foundations of optimizing generalized polynomials. Interes tingly, the investigation of optimality conditions and properties of the optimal solutions in such problems were carried out by Duffin and Zener with the aid of inequalities, rather than the more common approach of the Kuhn-Tucker theory.

Book Fin Shape Thermal Optimization Using Bejan s Constuctal Theory

Download or read book Fin Shape Thermal Optimization Using Bejan s Constuctal Theory written by Giulio Lorenzini and published by Springer Nature. This book was released on 2022-05-31 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered. Classical fin theory tried to reduce the coupled heat transfer problem to a one-dimensional problem by defining an average temperature of the fin and writing equations using this parameter. However, it was shown that this approach cannot be used because of the effects of two-dimensional heat transfer, especially in the presence of short fins. CFD codes offer the possibility to consider bi-dimensional (and more generally, three-dimensional) effects and then a more real approach to the physic phenomena of finned surface's heat exchange. A commercial CFD code was used to analyse the case of heat exchange in presence of T-shaped fins, following an approach suggested by Bejan's Constructal Theory. The comparative results showed a significant agreement with previous research taken as a reference, and this result allows for the application of this approach to a wider range of systems. T-shaped optimized fin geometry is the starting point for further research. Starting from the optimal results (T-shape optimized fins), we show the trend of the assessment parameter (the dimensionless conductance) in function of the angle a between the two horizontal arms of the fin. A value for a, 90°

Book Designing Engineering and Technology Curricula

Download or read book Designing Engineering and Technology Curricula written by John Heywood and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intention of this book is to demonstrate that curriculum design is a profoundly philosophical exercise that stems from perceptions of the mission of higher education. Since the curriculum is the formal mechanism through which intended aims are achieved, philosophy has a profound role to play in the determination of aims. It is argued that the curriculum is far more than a list of subjects and syllabi, or that it is the addition, and subtraction, of items from a syllabus, or whether this subject should be added and that subject taken away. This book explores how curricular aims and objectives are developed by re-examining the curriculum of higher education and how it is structured in the light of its increasing costs, rapidly changing technology, and the utilitarian philosophy that currently governs the direction of higher education. It is concluded that higher education should be a preparation for and continuing support for life and work, a consequence of which is that it has to equip graduates with skill in independent learning (and its planning), and reflective practice. A transdisciplinary curriculum with technology at its core is deduced that serves the four realities of the person, the job, technology, and society.

Book Fundamentals of Engineering Economics and Decision Analysis

Download or read book Fundamentals of Engineering Economics and Decision Analysis written by David Whitman and published by Springer Nature. This book was released on 2022-06-01 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors cover two general topics: basic engineering economics and risk analysis in this text. Within the topic of engineering economics are discussions on the time value of money and interest relationships. These interest relationships are used to define certain project criteria that are used by engineers and project managers to select the best economic choice among several alternatives. Projects examined will include both income- and service-producing investments. The effects of escalation, inflation, and taxes on the economic analysis of alternatives are discussed. Risk analysis incorporates the concepts of probability and statistics in the evaluation of alternatives. This allows management to determine the probability of success or failure of the project. Two types of sensitivity analyses are presented. The first is referred to as the range approach while the second uses probabilistic concepts to determine a measure of the risk involved. The authors have designed the text to assist individuals to prepare to successfully complete the economics portions of the Fundamentals of Engineering Exam. Table of Contents: Introduction / Interest and the Time Value of Money / Project Evaluation Methods / Service Producing Investments / Income Producing Investments / Determination of Project Cash Flow / Financial Leverage / Basic Statistics and Probability / Sensitivity Analysis

Book Scientific Analysis of Cultural Heritage Objects

Download or read book Scientific Analysis of Cultural Heritage Objects written by Michael Wiescher and published by Springer Nature. This book was released on 2022-05-31 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The characterization of cultural heritage objects becomes increasingly important for conservation, restoration, dating, and authentication purposes. The use of scientific methods in archaeometry and conservation science has led to a significant broadening of the field. Scientific analysis of these objects is a challenging task due to their complex composition, artistic and historical values requiring the use of minimally invasive and nondestructive analytical procedures. This textbook summarizes scientific methods that are currently used to characterize objects of cultural heritage and archaeological artifacts. This book provides a brief description of the structure of matter at the molecular, atomic, and nuclear levels. Furthermore, it discusses the chemical and physical nature of materials from the molecular to the atomic and nuclear level as determined by the principles of quantum mechanics. Important aspects of natural and anthropogenic radioactivity that play a critical role for some of the analytical techniques are also emphasized. The textbook also provides principals and applications of spectroscopic methods for characterization of cultural heritage objects. It describes the technologies with specific examples for utilization of spectroscopic techniques in the characterization of paintings, books, coins, ceramics, and other objects. Analytic approaches that employ isotopes and determination of isotope ratios will be reviewed. General principles of imaging techniques and specific examples for utilization of these methods will also be summarized. In the later part of the book, a number of scientific techniques for the age determination of cultural heritage material and archaeological artifacts will be presented and discussed with specific examples.

Book Engineering Principles in Everyday Life for Non Engineers

Download or read book Engineering Principles in Everyday Life for Non Engineers written by Saeed Benjamin and published by Springer Nature. This book was released on 2022-05-31 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the role of some engineering principles in our everyday lives. Engineers study these principles and use them in the design and analysis of the products and systems with which they work. The same principles play basic and influential roles in our everyday lives as well. Whether the concept of entropy, the moments of inertia, the natural frequency, the Coriolis acceleration, or the electromotive force, the roles and effects of these phenomena are the same in a system designed by an engineer or created by nature. This shows that learning about these engineering concepts helps us to understand why certain things happen or behave the way they do, and that these concepts are not strange phenomena invented by individuals only for their own use, rather, they are part of our everyday physical and natural world, but are used to our benefit by the engineers and scientists. Learning about these principles might also help attract more and more qualified and interested high school and college students to the engineering fields. Each chapter of this book explains one of these principles through examples, discussions, and at times, simple equations.

Book Visualizing Dynamic Systems

Download or read book Visualizing Dynamic Systems written by Mojgan M Haghanikar and published by Springer Nature. This book was released on 2022-06-01 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed to help instructional designers, science game designers, science faculty, lab designers, and content developers in designing interactive learning experiences using emerging technologies and cyberlearning. The proposed solutions are for undergraduate and graduate scientific communication, engineering courses, scientific research communication, and workforce training. Reviewing across the science education literature reveals various aspects of unresolved challenges or inabilities in the visualization of scientific concepts. Visuospatial thinking is the fundamental part of learning sciences; however, promoting spatial thinking has not been emphasized enough in the educational system (Hegarty, 2014). Cognitive scientists distinguish between the multiple aspects of spatial ability and stresse that various problems or disciplines require different types of spatial skills. For example, the spatial ability to visualize anatomy cross-sections is significantly associated with mental rotation skills. The same is true for physical problems that often deal with spatial representations. However, most of the physics problems are marked by dynamicity, and visualizing dynamicity is inferred by the integrations of different participating components in the system. Therefore, what is needed for learning dynamicity is visualizing the mental animation of static episodes. This book is a leap into designing framework for using mixed reality (XR) technologies and cyberlearning in communicating advanced scientific concepts. The intention is to flesh out the cognitive infrastructure and visuospatial demands of complex systems and compare them in various contexts and disciplines. The practical implementation of emerging technology can be achieved by foreseeing each XR technology’s affordances and mapping those out to the cognitive infrastructure and visuospatial demands of the content under development.

Book Lying by Approximation

Download or read book Lying by Approximation written by Vincent Prantil and published by Springer Nature. This book was released on 2022-06-01 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: In teaching an introduction to the finite element method at the undergraduate level, a prudent mix of theory and applications is often sought. In many cases, analysts use the finite element method to perform parametric studies on potential designs to size parts, weed out less desirable design scenarios, and predict system behavior under load. In this book, we discuss common pitfalls encountered by many finite element analysts, in particular, students encountering the method for the first time. We present a variety of simple problems in axial, bending, torsion, and shear loading that combine the students' knowledge of theoretical mechanics, numerical methods, and approximations particular to the finite element method itself. We also present case studies in which analyses are coupled with experiments to emphasize validation, illustrate where interpretations of numerical results can be misleading, and what can be done to allay such tendencies. Challenges in presenting the necessary mix of theory and applications in a typical undergraduate course are discussed. We also discuss a list of tips and rules of thumb for applying the method in practice. Table of Contents: Preface / Acknowledgments / Guilty Until Proven Innocent / Let's Get Started / Where We Begin to Go Wrong / It's Only a Model / Wisdom Is Doing It / Summary / Afterword / Bibliography / Authors' Biographies

Book Generating Functions in Engineering and the Applied Sciences

Download or read book Generating Functions in Engineering and the Applied Sciences written by Rajan Chattamvelli and published by Springer Nature. This book was released on 2022-05-31 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introductory book on generating functions (GFs) and their applications. It discusses commonly encountered generating functions in engineering and applied sciences, such as ordinary generating functions (OGF), exponential generating functions (EGF), probability generating functions (PGF), etc. Some new GFs like Pochhammer generating functions for both rising and falling factorials are introduced in Chapter 2. Two novel GFs called "mean deviation generating function" (MDGF) and "survival function generating function" (SFGF), are introduced in Chapter 3. The mean deviation of a variety of discrete distributions are derived using the MDGF. The last chapter discusses a large number of applications in various disciplines including algebra, analysis of algorithms, polymer chemistry, combinatorics, graph theory, number theory, reliability, epidemiology, bio-informatics, genetics, management, economics, and statistics. Some background knowledge on GFs is often assumed for courses in analysis of algorithms, advanced data structures, digital signal processing (DSP), graph theory, etc. These are usually provided by either a course on "discrete mathematics" or "introduction to combinatorics." But, GFs are also used in automata theory, bio-informatics, differential equations, DSP, number theory, physical chemistry, reliability engineering, stochastic processes, and so on. Students of these courses may not have exposure to discrete mathematics or combinatorics. This book is written in such a way that even those who do not have prior knowledge can easily follow through the chapters, and apply the lessons learned in their respective disciplines. The purpose is to give a broad exposure to commonly used techniques of combinatorial mathematics, highlighting applications in a variety of disciplines.

Book The Captains of Energy

Download or read book The Captains of Energy written by Paul Gessler and published by Springer Nature. This book was released on 2022-05-31 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: In teaching an introduction to transport or systems dynamics modeling at the undergraduate level, it is possible to lose pedagogical traction in a sea of abstract mathematics. What the mathematical modeling of time-dependent system behavior offers is a venue in which students can be taught that physical analogies exist between what they likely perceive as distinct areas of study in the physical sciences. We introduce a storyline whose characters are superheroes that store and dissipate energy in dynamic systems. Introducing students to the overarching conservation laws helps develop the analogy that ties the different disciplines together under a common umbrella of system energy. In this book, we use the superhero cast to present the effort-flow analogy and its relationship to the conservation principles of mass, momentum, energy, and electrical charge. We use a superhero movie script common to mechanical, electrical, fluid, and thermal engineering systems to illustrate how to apply the analogy to arrive at governing differential equations describing the systems' behavior in time. Ultimately, we show how only two types of differential equation, and therefore, two types of system response are possible. This novel approach of storytelling and a movie script is used to help make the mathematics of lumped system modeling more approachable for students. Table of Contents: Preface / Acknowledgments / If You Push It, It Will Flow / Governing Dynamics / The Electrical Cast / The Mechanical Cast / A Common Notion / Going Nowhere? / The Fluid and Thermal Casts / Summary / Afterword / Bibliography / Authors' Biographies