EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric Possibility

    Book Details:
  • Author : Gordon Belot
  • Publisher : OUP Oxford
  • Release : 2013-06-20
  • ISBN : 9780199681051
  • Pages : 0 pages

Download or read book Geometric Possibility written by Gordon Belot and published by OUP Oxford. This book was released on 2013-06-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relationalism seeks to ground all claims about the structure of space in facts about actual and possible configurations of matter. Gordon Belot elucidates the prospects for this view of the nature of space by investigating the key notion of geometric possibility in relation to philosophical notions of physical possibility.

Book Geometric Possibility

    Book Details:
  • Author : Gordon Belot
  • Publisher : Oxford University Press, USA
  • Release : 2011-04-28
  • ISBN : 0199595321
  • Pages : 230 pages

Download or read book Geometric Possibility written by Gordon Belot and published by Oxford University Press, USA. This book was released on 2011-04-28 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relationalism seeks to ground all claims about the structure of space in facts about actual and possible configurations of matter. Gordon Belot elucidates the prospects for this view of the nature of space by investigating the kew notion of geometric possibility in relation to philosophical notions of physical possibility.

Book Introduction to Geometric Probability

Download or read book Introduction to Geometric Probability written by Daniel A. Klain and published by Cambridge University Press. This book was released on 1997-12-11 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.

Book Geometric Probability

Download or read book Geometric Probability written by Herbert Solomon and published by SIAM. This book was released on 1978-01-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics include: ways modern statistical procedures can yield estimates of pi more precisely than the original Buffon procedure traditionally used; the question of density and measure for random geometric elements that leave probability and expectation statements invariant under translation and rotation; the number of random line intersections in a plane and their angles of intersection; developments due to W.L. Stevens's ingenious solution for evaluating the probability that n random arcs of size a cover a unit circumference completely; the development of M.W. Crofton's mean value theorem and its applications in classical problems; and an interesting problem in geometrical probability presented by a karyograph.

Book Geometric Modeling in Probability and Statistics

Download or read book Geometric Modeling in Probability and Statistics written by Ovidiu Calin and published by Springer. This book was released on 2014-07-17 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.

Book Random Geometric Graphs

    Book Details:
  • Author : Mathew Penrose
  • Publisher : Oxford University Press
  • Release : 2003
  • ISBN : 0198506260
  • Pages : 345 pages

Download or read book Random Geometric Graphs written by Mathew Penrose and published by Oxford University Press. This book was released on 2003 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides and explains the mathematics behind geometric graph theory. Applications of this theory are used on the study of neural networks, spread of disease, astrophysics and spatial statistics.

Book Integral Geometry and Geometric Probability

Download or read book Integral Geometry and Geometric Probability written by Luis A. Santaló and published by Cambridge University Press. This book was released on 2004-10-28 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic text on integral geometry now available in paperback in the Cambridge Mathematical Library.

Book Geometry  Analysis and Probability

Download or read book Geometry Analysis and Probability written by Jean-Benoît Bost and published by Birkhäuser. This book was released on 2017-04-26 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubédat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Müller R. Rhodes D. Rössler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.

Book Introductory Business Statistics 2e

Download or read book Introductory Business Statistics 2e written by Alexander Holmes and published by . This book was released on 2023-12-13 with total page 1801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

Book The Geometry of Uncertainty

Download or read book The Geometry of Uncertainty written by Fabio Cuzzolin and published by Springer. This book was released on 2021-12-19 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.

Book An Introduction to Geometrical Probability

Download or read book An Introduction to Geometrical Probability written by A.M. Mathai and published by CRC Press. This book was released on 1999-12-01 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: A useful guide for researchers and professionals, graduate and senior undergraduate students, this book provides an in-depth look at applied and geometrical probability with an emphasis on statistical distributions. A meticulous treatment of geometrical probability, kept at a level to appeal to a wider audience including applied researchers who will find the book to be both functional and practical with the large number of problems chosen from different disciplines A few topics such as packing and covering problems that have a vast literature are introduced here at a peripheral level for the purpose of familiarizing readers who are new to the area of research.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Introduction to Counting and Probability

Download or read book Introduction to Counting and Probability written by David Patrick and published by . This book was released on 2007-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Probability

Download or read book Introduction to Probability written by Joseph K. Blitzstein and published by CRC Press. This book was released on 2014-07-24 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Book Introduction to Probability

Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Book Factorization Calculus and Geometric Probability

Download or read book Factorization Calculus and Geometric Probability written by R. V. Ambartzumian and published by Cambridge University Press. This book was released on 1990-09-28 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical subjects of geometric probability and integral geometry, and the more modern one of stochastic geometry, are developed here in a novel way to provide a framework in which they can be studied. The author focuses on factorization properties of measures and probabilities implied by the assumption of their invariance with respect to a group, in order to investigate nontrivial factors. The study of these properties is the central theme of the book. Basic facts about integral geometry and random point process theory are developed in a simple geometric way, so that the whole approach is suitable for a nonspecialist audience. Even in the later chapters, where the factorization principles are applied to geometrical processes, the only prerequisites are standard courses on probability and analysis. The main ideas presented have application to such areas as stereology and geometrical statistics and this book will be a useful reference book for university students studying probability theory and stochastic geometry, and research mathematicians interested in this area.

Book Fat Chance

    Book Details:
  • Author : Benedict Gross
  • Publisher : Cambridge University Press
  • Release : 2019-06-13
  • ISBN : 1108482961
  • Pages : 213 pages

Download or read book Fat Chance written by Benedict Gross and published by Cambridge University Press. This book was released on 2019-06-13 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for the intellectually curious, this book provides a solid foundation in basic probability theory in a charming style, without technical jargon. This text will immerse the reader in a mathematical view of the world, and teach them techniques to solve real-world problems both inside and outside the casino.