EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geometric Mechanics  Rotating  translating and rolling

Download or read book Geometric Mechanics Rotating translating and rolling written by Darryl D. Holm and published by Imperial College Press. This book was released on 2008 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. This book treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups.

Book Geometric Mechanics

    Book Details:
  • Author : Darryl D Holm
  • Publisher : World Scientific Publishing Company
  • Release : 2008-04-14
  • ISBN : 1911299336
  • Pages : 311 pages

Download or read book Geometric Mechanics written by Darryl D Holm and published by World Scientific Publishing Company. This book was released on 2008-04-14 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. It treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level. Variational calculus on tangent spaces of Lie groups is explained in the context of familiar concrete examples. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, and then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints. The 120 Exercises and 55 Worked Answers help the student to grasp the essential aspects of the subject, and to develop proficiency in using the powerful methods of geometric mechanics. In addition, all theorems are stated and proved explicitly. The book's many examples and worked exercises make it ideal for both classroom use and self-study. Contents: GalileoNewton, Lagrange, HamiltonQuaternionsQuaternionic ConjugacySpecial Orthogonal GroupThe Special Euclidean GroupGeometric Mechanics on SE(3)Heavy Top EquationsThe Euler–Poincaré TheoremLie–Poisson Hamiltonian FormMomentum MapsRound Rolling Rigid Bodies Readership: Advanced undergraduate and graduate students in mathematics, physics and engineering; researchers interested in learning the basic ideas in the fields; non-experts interested in geometric mechanics, dynamics and symmetry.

Book Geometric Mechanics   Part Ii  Rotating  Translating And Rolling  2nd Edition

Download or read book Geometric Mechanics Part Ii Rotating Translating And Rolling 2nd Edition written by Holm Darryl D and published by World Scientific. This book was released on 2011-10-31 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: See also GEOMETRIC MECHANICS — Part I: Dynamics and Symmetry (2nd Edition) This textbook introduces modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. In particular, it explains the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The book uses familiar concrete examples to explain variational calculus on tangent spaces of Lie groups. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. Many worked examples of adjoint and coadjoint actions of Lie groups on smooth manifolds have also been added and the enhanced coursework examples have been expanded. The second edition is ideal for classroom use, student projects and self-study./a

Book Rotating  translating and rolling

Download or read book Rotating translating and rolling written by Darryl D. Holm and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced undergraduate and graduate students in mathematics, physics and engineering.

Book Geometric Mechanics   Part I  Dynamics And Symmetry  2nd Edition

Download or read book Geometric Mechanics Part I Dynamics And Symmetry 2nd Edition written by Holm Darryl D and published by World Scientific Publishing Company. This book was released on 2011-07-13 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie-Poisson Hamiltonian formulations and momentum maps in physical applications.The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications./a

Book Geometric Mechanics and Symmetry

Download or read book Geometric Mechanics and Symmetry written by Darryl D. Holm and published by Oxford University Press. This book was released on 2009-07-30 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.

Book Geometric Mechanics  Dynamics and symmetry

Download or read book Geometric Mechanics Dynamics and symmetry written by Darryl D. Holm and published by Imperial College Press. This book was released on 2008-01-01 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced undergraduate and graduate students in mathematics, physics and engineering.

Book Dynamical Systems and Geometric Mechanics

Download or read book Dynamical Systems and Geometric Mechanics written by Jared Maruskin and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-08-21 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.

Book Stochastic Geometric Mechanics

Download or read book Stochastic Geometric Mechanics written by Sergio Albeverio and published by Springer. This book was released on 2017-11-17 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting together contributed lectures and mini-courses, this book details the research presented in a special semester titled “Geometric mechanics – variational and stochastic methods” run in the first half of 2015 at the Centre Interfacultaire Bernoulli (CIB) of the Ecole Polytechnique Fédérale de Lausanne. The aim of the semester was to develop a common language needed to handle the wide variety of problems and phenomena occurring in stochastic geometric mechanics. It gathered mathematicians and scientists from several different areas of mathematics (from analysis, probability, numerical analysis and statistics, to algebra, geometry, topology, representation theory, and dynamical systems theory) and also areas of mathematical physics, control theory, robotics, and the life sciences, with the aim of developing the new research area in a concentrated joint effort, both from the theoretical and applied points of view. The lectures were given by leading specialists in different areas of mathematics and its applications, building bridges among the various communities involved and working jointly on developing the envisaged new interdisciplinary subject of stochastic geometric mechanics.

Book Geometric Mechanics and Symmetry

Download or read book Geometric Mechanics and Symmetry written by Darryl D. Holm and published by Oxford University Press. This book was released on 2009-07-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such as n particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and Symmetry is a friendly and fast-paced introduction to the geometric approach to classical mechanics, suitable for a one- or two- semester course for beginning graduate students or advanced undergraduates. It fills a gap between traditional classical mechanics texts and advanced modern mathematical treatments of the subject. After a summary of the necessary elements of calculus on smooth manifolds and basic Lie group theory, the main body of the text considers how symmetry reduction of Hamilton's principle allows one to derive and analyze the Euler-Poincaré equations for dynamics on Lie groups. Additional topics deal with rigid and pseudo-rigid bodies, the heavy top, shallow water waves, geophysical fluid dynamics and computational anatomy. The text ends with a discussion of the semidirect-product Euler-Poincaré reduction theorem for ideal fluid dynamics. A variety of examples and figures illustrate the material, while the many exercises, both solved and unsolved, make the book a valuable class text.

Book Differential Geometrical Theory of Statistics

Download or read book Differential Geometrical Theory of Statistics written by Frédéric Barbaresco and published by MDPI. This book was released on 2018-04-06 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Differential Geometrical Theory of Statistics" that was published in Entropy

Book Lie Groups  Differential Equations  and Geometry

Download or read book Lie Groups Differential Equations and Geometry written by Giovanni Falcone and published by Springer. This book was released on 2017-09-19 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

Book A Visual Introduction to Differential Forms and Calculus on Manifolds

Download or read book A Visual Introduction to Differential Forms and Calculus on Manifolds written by Jon Pierre Fortney and published by Springer. This book was released on 2018-11-03 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

Book Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds

Download or read book Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds written by Taeyoung Lee and published by Springer. This book was released on 2017-08-14 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.

Book Mathematical Modelling of Physical Systems

Download or read book Mathematical Modelling of Physical Systems written by Michel Cessenat and published by Springer. This book was released on 2018-10-26 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and thorough, this monograph emphasizes the main role differential geometry and convex analysis play in the understanding of physical, chemical, and mechanical notions. Central focus is placed on specifying the agreement between the functional framework and its physical necessity and on making clear the intrinsic character of physical elements, independent from specific charts or frames. The book is divided into four sections, covering thermostructure, classical mechanics, fluid mechanics modelling, and behavior laws. An extensive appendix provides notations and definitions as well as brief explanation of integral manifolds, symplectic structure, and contact structure. Plenty of examples are provided throughout the book, and reviews of basic principles in differential geometry and convex analysis are presented as needed. This book is a useful resource for graduate students and researchers in the field.

Book Geometric Science of Information

Download or read book Geometric Science of Information written by Frank Nielsen and published by Springer. This book was released on 2013-08-19 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Conference on Geometric Science of Information, GSI 2013, held in Paris, France, in August 2013. The nearly 100 papers presented were carefully reviewed and selected from numerous submissions and are organized into the following thematic sessions: Geometric Statistics on Manifolds and Lie Groups, Deformations in Shape Spaces, Differential Geometry in Signal Processing, Relational Metric, Discrete Metric Spaces, Computational Information Geometry, Hessian Information Geometry I and II, Computational Aspects of Information Geometry in Statistics, Optimization on Matrix Manifolds, Optimal Transport Theory, Probability on Manifolds, Divergence Geometry and Ancillarity, Entropic Geometry, Tensor-Valued Mathematical Morphology, Machine/Manifold/Topology Learning, Geometry of Audio Processing, Geometry of Inverse Problems, Algebraic/Infinite dimensional/Banach Information Manifolds, Information Geometry Manifolds, and Algorithms on Manifolds.

Book Theoretical Foundations of Nanoscale Quantum Devices

Download or read book Theoretical Foundations of Nanoscale Quantum Devices written by Malin Premaratne and published by Cambridge University Press. This book was released on 2021-01-07 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanooptics which describes the interaction of light with matter at the nanoscale, is a topic of great fundamental interest to physicists and engineers and allows the direct observation of quantum mechanical phenomena in action. This self-contained and extensively referenced text describes the underlying theory behind nanodevices operating in the quantum regime for use both in advanced courses and as a reference for researchers in physics, chemistry, electrical engineering, and materials science. Presenting an extensive theoretical toolset for design and analysis of nanodevices, the authors demonstrate the art of developing approximate quantum models of real nanodevices. The rudimentary mathematical knowledge required to master the material is carefully introduced, with detailed derivations and frequent worked examples allowing readers to gain a thorough understanding of the material. More advanced applications are gradually introduced alongside analytical approximations and simplifying assumptions often used to make such problems tractable while representative of the observed features.