Download or read book Generalized Density Based Clustering for Spatial Data Mining written by Jörg Sander and published by Herbert Utz Verlag. This book was released on 1999 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Download or read book Spatial Data Mining written by Deren Li and published by Springer. This book was released on 2016-03-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: · This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.
Download or read book Toward Artificial General Intelligence written by Victor Hugo C. de Albuquerque and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-11-06 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Comprehensive Chemometrics written by and published by Elsevier. This book was released on 2009-03-09 with total page 2880 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to serve as the first point of reference on the subject, Comprehensive Chemometrics presents an integrated summary of the present state of chemical and biochemical data analysis and manipulation. The work covers all major areas ranging from statistics to data acquisition, analysis, and applications. This major reference work provides broad-ranging, validated summaries of the major topics in chemometrics—with chapter introductions and advanced reviews for each area. The level of material is appropriate for graduate students as well as active researchers seeking a ready reference on obtaining and analyzing scientific data. Features the contributions of leading experts from 21 countries, under the guidance of the Editors-in-Chief and a team of specialist Section Editors: L. Buydens; D. Coomans; P. Van Espen; A. De Juan; J.H. Kalivas; B.K. Lavine; R. Leardi; R. Phan-Tan-Luu; L.A. Sarabia; and J. Trygg Examines the merits and limitations of each technique through practical examples and extensive visuals: 368 tables and more than 1,300 illustrations (750 in full color) Integrates coverage of chemical and biological methods, allowing readers to consider and test a range of techniques Consists of 2,200 pages and more than 90 review articles, making it the most comprehensive work of its kind Offers print and online purchase options, the latter of which delivers flexibility, accessibility, and usability through the search tools and other productivity-enhancing features of ScienceDirect
Download or read book Data Mining Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Download or read book Multiobjective Genetic Algorithms for Clustering written by Ujjwal Maulik and published by Springer Science & Business Media. This book was released on 2011-09-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book primarily dedicated to clustering using multiobjective genetic algorithms with extensive real-life applications in data mining and bioinformatics. The authors first offer detailed introductions to the relevant techniques – genetic algorithms, multiobjective optimization, soft computing, data mining and bioinformatics. They then demonstrate systematic applications of these techniques to real-world problems in the areas of data mining, bioinformatics and geoscience. The authors offer detailed theoretical and statistical notes, guides to future research, and chapter summaries. The book can be used as a textbook and as a reference book by graduate students and academic and industrial researchers in the areas of soft computing, data mining, bioinformatics and geoscience.
Download or read book Data Clustering Theory Algorithms and Applications Second Edition written by Guojun Gan and published by SIAM. This book was released on 2020-11-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Download or read book Data Analytics for Cybersecurity written by Vandana P. Janeja and published by Cambridge University Press. This book was released on 2022-07-21 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world becomes increasingly connected, it is also more exposed to a myriad of cyber threats. We need to use multiple types of tools and techniques to learn and understand the evolving threat landscape. Data is a common thread linking various types of devices and end users. Analyzing data across different segments of cybersecurity domains, particularly data generated during cyber-attacks, can help us understand threats better, prevent future cyber-attacks, and provide insights into the evolving cyber threat landscape. This book takes a data oriented approach to studying cyber threats, showing in depth how traditional methods such as anomaly detection can be extended using data analytics and also applies data analytics to non-traditional views of cybersecurity, such as multi domain analysis, time series and spatial data analysis, and human-centered cybersecurity.
Download or read book Big Data Analytics for Cyber Physical Systems written by Guido Dartmann and published by Elsevier. This book was released on 2019-07-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approx.374 pages
Download or read book Advances in High Performance Computing written by Ivan Dimov and published by Springer Nature. This book was released on 2020-08-07 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every day we need to solve large problems for which supercomputers are needed. High performance computing (HPC) is a paradigm that allows to efficiently implement large-scale computational tasks on powerful supercomputers unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many challenging real world problems arising in engineering, economics, medicine and other areas can be formulated as large-scale computational tasks. The volume is a comprehensive collection of extended contributions from the High performance computing conference held in Borovets, Bulgaria, September 2019. This book presents recent advances in high performance computing. The topics of interest included into this volume are: HP software tools, Parallel Algorithms and Scalability, HPC in Big Data analytics, Modelling, Simulation & Optimization in a Data Rich Environment, Advanced numerical methods for HPC, Hybrid parallel or distributed algorithms. The volume is focused on important large-scale applications like Environmental and Climate Modeling, Computational Chemistry and Heuristic Algorithms.
Download or read book Algorithms Architectures For Parallel Processing 4th Intl Conf written by Andrzej Marian Goscinski and published by World Scientific. This book was released on 2000-11-24 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICA3PP 2000 was an important conference that brought together researchers and practitioners from academia, industry and governments to advance the knowledge of parallel and distributed computing. The proceedings constitute a well-defined set of innovative research papers in two broad areas of parallel and distributed computing: (1) architectures, algorithms and networks; (2) systems and applications.
Download or read book Advanced Data Mining and Applications written by Changjie Tang and published by Springer Science & Business Media. This book was released on 2008-09-29 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Conference on Advanced Data Mining and Applications, ADMA 2008, held in Chengdu, China, in October 2008. The 35 revised full papers and 43 revised short papers presented together with the abstract of 2 keynote lectures were carefully reviewed and selected from 304 submissions. The papers focus on advancements in data mining and peculiarities and challenges of real world applications using data mining and feature original research results in data mining, spanning applications, algorithms, software and systems, and different applied disciplines with potential in data mining.
Download or read book High Performance Data Mining written by Yike Guo and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Performance Data Mining: Scaling Algorithms, Applications and Systems brings together in one place important contributions and up-to-date research results in this fast moving area. High Performance Data Mining: Scaling Algorithms, Applications and Systems serves as an excellent reference, providing insight into some of the most challenging research issues in the field.
Download or read book Knowledge based Intelligent Information and Engineering Systems written by and published by . This book was released on 2005 with total page 1032 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Warehousing and Knowledge Discovery written by Il Yeol Song and published by Springer Science & Business Media. This book was released on 2007-08-24 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery, DaWak 2007, held in Regensburg, Germany, September 2007. Coverage includes ETL processing, multidimensional design, OLAP and multidimensional model, cubes processing, data warehouse applications, frequent itemsets, ontology-based mining, clustering, association rules, miscellaneous applications, and classification.