Download or read book Fundamentals of Differential Geometry written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER
Download or read book An Introduction to Differential Geometry written by T. J. Willmore and published by Courier Corporation. This book was released on 2013-05-13 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Download or read book Differential and Riemannian Manifolds written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Download or read book Metric Structures in Differential Geometry written by Gerard Walschap and published by Springer Science & Business Media. This book was released on 2012-08-23 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.
Download or read book Differential Geometry written by Clifford Taubes and published by Oxford University Press. This book was released on 2011-10-13 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.
Download or read book Topics in Differential Geometry written by Peter W. Michor and published by American Mathematical Soc.. This book was released on 2008 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. It gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra."--BOOK JACKET.
Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Download or read book Elementary Differential Geometry written by A.N. Pressley and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul
Download or read book Foundations of Differential Geometry Volume 2 written by Shoshichi Kobayashi and published by University of Texas Press. This book was released on 1996-02-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.
Download or read book Differential Geometry and Statistics written by M.K. Murray and published by CRC Press. This book was released on 1993-04-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics. It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry.
Download or read book Introduction to Differentiable Manifolds written by Serge Lang and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author is well-known and established book author (all Serge Lang books are now published by Springer); Presents a brief introduction to the subject; All manifolds are assumed finite dimensional in order not to frighten some readers; Complete proofs are given; Use of manifolds cuts across disciplines and includes physics, engineering and economics
Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.
Download or read book Riemannian Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Download or read book Fundamentals of Advanced Mathematics V3 written by Henri Bourles and published by Elsevier. This book was released on 2019-10-11 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Advanced Mathematics, Volume Three, begins with the study of differential and analytic infinite-dimensional manifolds, then progresses into fibered bundles, in particular, tangent and cotangent bundles. In addition, subjects covered include the tensor calculus on manifolds, differential and integral calculus on manifolds (general Stokes formula, integral curves and manifolds), an analysis on Lie groups, the Haar measure, the convolution of functions and distributions, and the harmonic analysis over a Lie group. Finally, the theory of connections is (linear connections, principal connections, and Cartan connections) covered, as is the calculus of variations in Lagrangian and Hamiltonian formulations. This volume is the prerequisite to the analytic and geometric study of nonlinear systems. - Includes sections on differential and analytic manifolds, vector bundles, tensors, Lie derivatives, applications to algebraic topology, and more - Presents an ideal prerequisite resource on the analytic and geometric study of nonlinear systems - Provides theory as well as practical information
Download or read book Differential Topology written by David B. Gauld and published by Courier Corporation. This book was released on 2013-07-24 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text covers topological spaces and properties, some advanced calculus, differentiable manifolds, orientability, submanifolds and an embedding theorem, tangent spaces, vector fields and integral curves, Whitney's embedding theorem, more. Includes 88 helpful illustrations. 1982 edition.
Download or read book An Introduction to Riemannian Geometry written by Leonor Godinho and published by Springer. This book was released on 2014-07-26 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.