Download or read book Fundamentals of Data Engineering written by Joe Reis and published by "O'Reilly Media, Inc.". This book was released on 2022-06-22 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle
Download or read book 97 Things Every Data Engineer Should Know written by Tobias Macey and published by "O'Reilly Media, Inc.". This book was released on 2021-06-11 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
Download or read book Fundamentals of Data Structures written by Ellis Horowitz and published by . This book was released on 1978 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Big Data Fundamentals written by Thomas Erl and published by Prentice Hall. This book was released on 2015-12-29 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: “This text should be required reading for everyone in contemporary business.” --Peter Woodhull, CEO, Modus21 “The one book that clearly describes and links Big Data concepts to business utility.” --Dr. Christopher Starr, PhD “Simply, this is the best Big Data book on the market!” --Sam Rostam, Cascadian IT Group “...one of the most contemporary approaches I’ve seen to Big Data fundamentals...” --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data’s fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 “V” characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data’s relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data’s distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning
Download or read book Data Engineering with Python written by Paul Crickard and published by Packt Publishing Ltd. This book was released on 2020-10-23 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.
Download or read book Fundamentals of Data Communication Networks written by Oliver C. Ibe and published by John Wiley & Sons. This book was released on 2017-11-01 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: What every electrical engineering student and technical professional needs to know about data exchange across networks While most electrical engineering students learn how the individual components that make up data communication technologies work, they rarely learn how the parts work together in complete data communication networks. In part, this is due to the fact that until now there have been no texts on data communication networking written for undergraduate electrical engineering students. Based on the author’s years of classroom experience, Fundamentals of Data Communication Networks fills that gap in the pedagogical literature, providing readers with a much-needed overview of all relevant aspects of data communication networking, addressed from the perspective of the various technologies involved. The demand for information exchange in networks continues to grow at a staggering rate, and that demand will continue to mount exponentially as the number of interconnected IoT-enabled devices grows to an expected twenty-six billion by the year 2020. Never has it been more urgent for engineering students to understand the fundamental science and technology behind data communication, and this book, the first of its kind, gives them that understanding. To achieve this goal, the book: Combines signal theory, data protocols, and wireless networking concepts into one text Explores the full range of issues that affect common processes such as media downloads and online games Addresses services for the network layer, the transport layer, and the application layer Investigates multiple access schemes and local area networks with coverage of services for the physical layer and the data link layer Describes mobile communication networks and critical issues in network security Includes problem sets in each chapter to test and fine-tune readers’ understanding Fundamentals of Data Communication Networks is a must-read for advanced undergraduates and graduate students in electrical and computer engineering. It is also a valuable working resource for researchers, electrical engineers, and technical professionals.
Download or read book Fundamentals of Data Warehouses written by Matthias Jarke and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first comparative review of the state of the art and the best current practices of data warehouses. It covers source and data integration, multidimensional aggregation, query optimization, metadata management, quality assessment, and design optimization. A conceptual framework is presented by which the architecture and quality of a data warehouse can be assessed and improved using enriched metadata management combined with advanced techniques from databases, business modeling, and artificial intelligence.
Download or read book Foundations of data engineering concepts principles and practices written by Dr. RVS Praveen and published by Addition Publishing House. This book was released on 2024-09-23 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Data Engineering: Concepts, Principles and Practices" offers a comprehensive introduction to the processes and systems that make data-driven decision-making possible. In today’s data-centric world, companies rely heavily on vast amounts of data to inform strategies, optimize operations, and innovate. This book explains the essential building blocks of data engineering, covering topics like data pipelines, ETL (Extract, Transform, Load) processes, data storage, and distributed computing. The text is structured to guide readers through the end-to-end lifecycle of data, from ingestion to transformation and analysis. It emphasizes best practices in designing robust, scalable data pipelines that ensure high-quality, reliable data is delivered to downstream analytics and machine learning systems. Topics such as batch and real-time data processing are covered, with in-depth discussions on tools and technologies like Apache Kafka, Hadoop, Spark, and cloud-based solutions like Google Cloud and AWS. For those new to the field or looking to expand their knowledge, this book also addresses the importance of data governance, ensuring data integrity, security, and compliance. Readers will gain insights into the challenges of big data and how modern engineering approaches can handle growing data volumes efficiently. With case studies and practical examples throughout, "Foundations of Data Engineering: Concepts, Principles and Practices" is a valuable resource for aspiring data engineers, analysts, and anyone involved in the data ecosystem looking to build scalable, reliable data solutions.
Download or read book Designing Data Intensive Applications written by Martin Kleppmann and published by "O'Reilly Media, Inc.". This book was released on 2017-03-16 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures
Download or read book Reference Data for Engineers written by Mac E. Van Valkenburg and published by Newnes. This book was released on 2001-09-26 with total page 1696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This standard handbook for engineers covers the fundamentals, theory and applications of radio, electronics, computers, and communications equipment. It provides information on essential, need-to-know topics without heavy emphasis on complicated mathematics. It is a "must-have" for every engineer who requires electrical, electronics, and communications data. Featured in this updated version is coverage on intellectual property and patents, probability and design, antennas, power electronics, rectifiers, power supplies, and properties of materials. Useful information on units, constants and conversion factors, active filter design, antennas, integrated circuits, surface acoustic wave design, and digital signal processing is also included. This work also offers new knowledge in the fields of satellite technology, space communication, microwave science, telecommunication, global positioning systems, frequency data, and radar.
Download or read book The Rails Way written by Obie Fernandez and published by Pearson Education. This book was released on 2007-11-16 with total page 951 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expert guide to building Ruby on Rails applications Ruby on Rails strips complexity from the development process, enabling professional developers to focus on what matters most: delivering business value. Now, for the first time, there’s a comprehensive, authoritative guide to building production-quality software with Rails. Pioneering Rails developer Obie Fernandez and a team of experts illuminate the entire Rails API, along with the Ruby idioms, design approaches, libraries, and plug-ins that make Rails so valuable. Drawing on their unsurpassed experience, they address the real challenges development teams face, showing how to use Rails’ tools and best practices to maximize productivity and build polished applications users will enjoy. Using detailed code examples, Obie systematically covers Rails’ key capabilities and subsystems. He presents advanced programming techniques, introduces open source libraries that facilitate easy Rails adoption, and offers important insights into testing and production deployment. Dive deep into the Rails codebase together, discovering why Rails behaves as it does— and how to make it behave the way you want it to. This book will help you Increase your productivity as a web developer Realize the overall joy of programming with Ruby on Rails Learn what’s new in Rails 2.0 Drive design and protect long-term maintainability with TestUnit and RSpec Understand and manage complex program flow in Rails controllers Leverage Rails’ support for designing REST-compliant APIs Master sophisticated Rails routing concepts and techniques Examine and troubleshoot Rails routing Make the most of ActiveRecord object-relational mapping Utilize Ajax within your Rails applications Incorporate logins and authentication into your application Extend Rails with the best third-party plug-ins and write your own Integrate email services into your applications with ActionMailer Choose the right Rails production configurations Streamline deployment with Capistrano
Download or read book The Pragmatic Programmer written by David Thomas and published by Addison-Wesley Professional. This book was released on 2019-07-30 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: “One of the most significant books in my life.” –Obie Fernandez, Author, The Rails Way “Twenty years ago, the first edition of The Pragmatic Programmer completely changed the trajectory of my career. This new edition could do the same for yours.” –Mike Cohn, Author of Succeeding with Agile , Agile Estimating and Planning , and User Stories Applied “. . . filled with practical advice, both technical and professional, that will serve you and your projects well for years to come.” –Andrea Goulet, CEO, Corgibytes, Founder, LegacyCode.Rocks “. . . lightning does strike twice, and this book is proof.” –VM (Vicky) Brasseur, Director of Open Source Strategy, Juniper Networks The Pragmatic Programmer is one of those rare tech books you’ll read, re-read, and read again over the years. Whether you’re new to the field or an experienced practitioner, you’ll come away with fresh insights each and every time. Dave Thomas and Andy Hunt wrote the first edition of this influential book in 1999 to help their clients create better software and rediscover the joy of coding. These lessons have helped a generation of programmers examine the very essence of software development, independent of any particular language, framework, or methodology, and the Pragmatic philosophy has spawned hundreds of books, screencasts, and audio books, as well as thousands of careers and success stories. Now, twenty years later, this new edition re-examines what it means to be a modern programmer. Topics range from personal responsibility and career development to architectural techniques for keeping your code flexible and easy to adapt and reuse. Read this book, and you’ll learn how to: Fight software rot Learn continuously Avoid the trap of duplicating knowledge Write flexible, dynamic, and adaptable code Harness the power of basic tools Avoid programming by coincidence Learn real requirements Solve the underlying problems of concurrent code Guard against security vulnerabilities Build teams of Pragmatic Programmers Take responsibility for your work and career Test ruthlessly and effectively, including property-based testing Implement the Pragmatic Starter Kit Delight your users Written as a series of self-contained sections and filled with classic and fresh anecdotes, thoughtful examples, and interesting analogies, The Pragmatic Programmer illustrates the best approaches and major pitfalls of many different aspects of software development. Whether you’re a new coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily, and you’ll quickly see improvements in personal productivity, accuracy, and job satisfaction. You’ll learn skills and develop habits and attitudes that form the foundation for long-term success in your career. You’ll become a Pragmatic Programmer. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Download or read book Data Pipelines Pocket Reference written by James Densmore and published by O'Reilly Media. This book was released on 2021-02-10 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting
Download or read book Fundamentals of Electrical Engineering written by Charles A. Gross and published by CRC Press. This book was released on 2012-02-15 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-world engineering problems are rarely, if ever, neatly divided into mechanical, electrical, chemical, civil, and other categories. Engineers from all disciplines eventually encounter computer and electronic controls and instrumentation, which require at least a basic knowledge of electrical and other engineering specialties, as well as associa
Download or read book Data Engineering on Azure written by Vlad Riscutia and published by Simon and Schuster. This book was released on 2021-08-17 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Download or read book Machine Learning and Data Science written by Prateek Agrawal and published by John Wiley & Sons. This book was released on 2022-07-25 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.
Download or read book Fundamentals of Data Engineering written by Joseph Reis and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: