EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Functions of Matrices

Download or read book Functions of Matrices written by Nicholas J. Higham and published by SIAM. This book was released on 2008-01-01 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.

Book Matrices  Moments and Quadrature with Applications

Download or read book Matrices Moments and Quadrature with Applications written by Gene H. Golub and published by Princeton University Press. This book was released on 2009-12-07 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.

Book Monotone Matrix Functions and Analytic Continuation

Download or read book Monotone Matrix Functions and Analytic Continuation written by W.F.Jr. Donoghue and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Pick function is a function that is analytic in the upper half-plane with positive imaginary part. In the first part of this book we try to give a readable account of this class of functions as well as one of the standard proofs of the spectral theorem based on properties of this class. In the remainder of the book we treat a closely related topic: Loewner's theory of monotone matrix functions and his analytic continuation theorem which guarantees that a real function on an interval of the real axis which is a monotone matrix function of arbitrarily high order is the restriction to that interval of a Pick function. In recent years this theorem has been complemented by the Loewner-FitzGerald theorem, giving necessary and sufficient conditions that the continuation provided by Loewner's theorem be univalent. In order that our presentation should be as complete and trans parent as possible, we have adjoined short chapters containing the in formation about reproducing kernels, almost positive matrices and certain classes of conformal mappings needed for our proofs.

Book Model Order Reduction  Theory  Research Aspects and Applications

Download or read book Model Order Reduction Theory Research Aspects and Applications written by Wilhelmus H. Schilders and published by Springer Science & Business Media. This book was released on 2008-08-27 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Book Introduction to Linear and Matrix Algebra

Download or read book Introduction to Linear and Matrix Algebra written by Nathaniel Johnston and published by Springer Nature. This book was released on 2021-05-19 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.

Book Handbook of Green s Functions and Matrices

Download or read book Handbook of Green s Functions and Matrices written by V. D. Şeremet and published by Witpress. This book was released on 2003 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for graduate and postgraduate students investigating such areas as elasticity, thermoelasticity, mechanics, heat conduction, elector and magneto conduction, electronics, radio-physics, hydrodynamics, and conduction of moisture, the text will also be of interest to engineers and researchers working in these fields.

Book Matrix Theory

    Book Details:
  • Author : Fuzhen Zhang
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-14
  • ISBN : 1475757972
  • Pages : 290 pages

Download or read book Matrix Theory written by Fuzhen Zhang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.

Book Hierarchical Matrices  Algorithms and Analysis

Download or read book Hierarchical Matrices Algorithms and Analysis written by Wolfgang Hackbusch and published by Springer. This book was released on 2015-12-21 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

Book The Theory of Matrices

Download or read book The Theory of Matrices written by Feliks Ruvimovich Gantmakher and published by . This book was released on 1960 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Matrix Analysis and Applications

Download or read book Introduction to Matrix Analysis and Applications written by Fumio Hiai and published by Springer Science & Business Media. This book was released on 2014-02-06 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.

Book Loewner s Theorem on Monotone Matrix Functions

Download or read book Loewner s Theorem on Monotone Matrix Functions written by Barry Simon and published by Springer Nature. This book was released on 2019-08-29 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an in depth discussion of Loewner’s theorem on the characterization of matrix monotone functions. The author refers to the book as a ‘love poem,’ one that highlights a unique mix of algebra and analysis and touches on numerous methods and results. The book details many different topics from analysis, operator theory and algebra, such as divided differences, convexity, positive definiteness, integral representations of function classes, Pick interpolation, rational approximation, orthogonal polynomials, continued fractions, and more. Most applications of Loewner’s theorem involve the easy half of the theorem. A great number of interesting techniques in analysis are the bases for a proof of the hard half. Centered on one theorem, eleven proofs are discussed, both for the study of their own approach to the proof and as a starting point for discussing a variety of tools in analysis. Historical background and inclusion of pictures of some of the main figures who have developed the subject, adds another depth of perspective. The presentation is suitable for detailed study, for quick review or reference to the various methods that are presented. The book is also suitable for independent study. The volume will be of interest to research mathematicians, physicists, and graduate students working in matrix theory and approximation, as well as to analysts and mathematical physicists.

Book Square Matrices of Order 2

Download or read book Square Matrices of Order 2 written by Vasile Pop and published by Springer. This book was released on 2017-04-04 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique and innovative book presents an exciting and complete detail of all the important topics related to the theory of square matrices of order 2. The readers exploring every detailed aspect of matrix theory are gently led toward understanding advanced topics. They will follow every notion of matrix theory with ease, accumulating a thorough understanding of algebraic and geometric aspects of matrices of order 2. The prime jewel of this book is its offering of an unusual collection of problems, theoretically motivated, most of which are new, original, and seeing the light of publication for the first time in the literature. Nearly all of the exercises are presented with detailed solutions and vary in difficulty from easy to more advanced. Many problems are particularly challenging. These, and not only these, invite the reader to unleash their creativity and research capabilities and to discover their own methods of attacking a problem. Matrices have a vast practical importance to mathematics, science, and engineering; therefore the readership of this book is intended to be broad: high school students wishing to learn the fundamentals of matrix theory, first year students who like to participate in mathematical competitions, graduate students who want to learn more about an application of a certain technique, doctoral students who are preparing for their prelim exams in linear algebra, and linear algebra instructors. Chapters 1–3 complement a standard linear algebra course. Pure and applied mathematicians who use matrix theory for their applications will find this book useful as a refresher. In fact, anyone who is willing to explore the methodologies discussed in this book and work through a collection of problems involving matrices of order 2 will be enriched.

Book Lambda matrices and Vibrating Systems

Download or read book Lambda matrices and Vibrating Systems written by Peter Lancaster and published by Courier Corporation. This book was released on 2002-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text covers several aspects and solutions of the problems of linear vibrating systems with a finite number of degrees of freedom. It offers a detailed account of the part of the theory of matrices necessary for efficient problem-solving, beginning with a focus on developing the necessary tools in matrix theory in the first four chapters. The following chapters present numerical procedures for the relevant matrix formulations and the relevant theory of differential equations. Directed toward a wide audience of applied mathematicians, scientists, and engineers, this book has much to offer all those interested in problem-solving from both practical and theoretical points of view. The mathematically sound treatment involves readers in a minimum of mathematical abstraction; it assumes a familiarity and facility with matrix theory, along with a knowledge of elementary calculus (including the rudiments of the theory of functions of a complex variable). Those already engaged in the practical analysis of vibrating systems have the option of proceeding directly to the more applications-oriented material, starting with Chapter 7; however, this comprehensive treatment offers ample background in the early chapters for less experienced readers. New Preface to the Dover Edition. Errata List. Preface. Bibliographical Notes. References. Index.

Book College Algebra

    Book Details:
  • Author : Jay Abramson
  • Publisher :
  • Release : 2018-01-07
  • ISBN : 9789888407439
  • Pages : 892 pages

Download or read book College Algebra written by Jay Abramson and published by . This book was released on 2018-01-07 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory

Book Random Matrices

    Book Details:
  • Author : Madan Lal Mehta
  • Publisher : Elsevier
  • Release : 2004-10-06
  • ISBN : 008047411X
  • Pages : 707 pages

Download or read book Random Matrices written by Madan Lal Mehta and published by Elsevier. This book was released on 2004-10-06 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random Matrices gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. - Presentation of many new results in one place for the first time - First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals - Fredholm determinants and Painlevé equations - The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities - Fredholm determinants and inverse scattering theory - Probability densities of random determinants

Book Linear Algebra and Matrices

Download or read book Linear Algebra and Matrices written by Shmuel Friedland and published by SIAM. This book was released on 2018-01-30 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.

Book Matrix Mathematics

    Book Details:
  • Author : Dennis S. Bernstein
  • Publisher : Princeton University Press
  • Release : 2009-07-26
  • ISBN : 0691140391
  • Pages : 1183 pages

Download or read book Matrix Mathematics written by Dennis S. Bernstein and published by Princeton University Press. This book was released on 2009-07-26 with total page 1183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each chapter in this book describes relevant background theory followed by specialized results. Hundreds of identities, inequalities, and matrix facts are stated clearly with cross references, citations to the literature, and illuminating remarks.