EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Recursive Functionals

Download or read book Recursive Functionals written by L.E. Sanchis and published by Elsevier. This book was released on 1992-05-18 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is a self-contained elementary exposition of the theory of recursive functionals, that also includes a number of advanced results. Although aiming basically at a theory of higher order computability, attention is restricted to second order functionals, where the arguments are numerical functions and the values, when defined, are natural numbers. This theory is somewhat special, for to some extent it can be reduced to first order theory, but when properly extended and relativized it requires the full machinery of higher order computations. In the theory of recursive monotonic functionals the author formulates a reasonable notion of computation which provides the right frame for what appears to be a convincing form of the extended Church's thesis. At the same time, the theory provides sufficient room to formulate the classical results that are usually derived in terms of singular functionals. Presented are complete proofs of Gandy's selector theorem, Kleene's theorem on hyperarithmetical predicates, and Grilliot's theorem on effectively discontinuous functionals.

Book Functionals and Their Applications

Download or read book Functionals and Their Applications written by Griffith Conrad Evans and published by . This book was released on 1918 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lyapunov Functionals and Stability of Stochastic Difference Equations

Download or read book Lyapunov Functionals and Stability of Stochastic Difference Equations written by Leonid Shaikhet and published by Springer Science & Business Media. This book was released on 2011-06-02 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson’s blowflies equation and predator–prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.

Book Complex Convexity and Analytic Functionals

Download or read book Complex Convexity and Analytic Functionals written by Mats Andersson and published by Birkhäuser. This book was released on 2012-12-06 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations.

Book Generalized Functionals of Brownian Motion and Their Applications

Download or read book Generalized Functionals of Brownian Motion and Their Applications written by Nasir Uddin Ahmed and published by World Scientific. This book was released on 2012 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable research monograph presents a unified and fascinating theory of generalized functionals of Brownian motion and other fundamental processes such as fractional Brownian motion and Levy process OCo covering the classical WienerOCoIto class including the generalized functionals of Hida as special cases, among others. It presents a thorough and comprehensive treatment of the WienerOCoSobolev spaces and their duals, as well as Malliavin calculus with their applications. The presentation is lucid and logical, and is based on a solid foundation of analysis and topology. The monograph develops the notions of compactness and weak compactness on these abstract Fock spaces and their duals, clearly demonstrating their nontrivial applications to stochastic differential equations in finite and infinite dimensional Hilbert spaces, optimization and optimal control problems. Readers will find the book an interesting and easy read as materials are presented in a systematic manner with a complete analysis of classical and generalized functionals of scalar Brownian motion, Gaussian random fields and their vector versions in the increasing order of generality. It starts with abstract Fourier analysis on the Wiener measure space where a striking similarity of the celebrated RieszOCoFischer theorem for separable Hilbert spaces and the space of WienerOCoIto functionals is drawn out, thus providing a clear insight into the subject.

Book Lectures On White Noise Functionals

Download or read book Lectures On White Noise Functionals written by Takeyuki Hida and published by World Scientific. This book was released on 2008-07-04 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: White noise analysis is an advanced stochastic calculus that has developed extensively since three decades ago. It has two main characteristics. One is the notion of generalized white noise functionals, the introduction of which is oriented by the line of advanced analysis, and they have made much contribution to the fields in science enormously. The other characteristic is that the white noise analysis has an aspect of infinite dimensional harmonic analysis arising from the infinite dimensional rotation group. With the help of this rotation group, the white noise analysis has explored new areas of mathematics and has extended the fields of applications.

Book Density Functionals For Many particle Systems  Mathematical Theory And Physical Applications Of Effective Equations

Download or read book Density Functionals For Many particle Systems Mathematical Theory And Physical Applications Of Effective Equations written by Berthold-georg Englert and published by World Scientific. This book was released on 2023-02-10 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density Functional Theory (DFT) first established it's theoretical footing in the 1960s from the framework of Hohenberg-Kohn theorems. DFT has since seen much development in evaluation techniques as well as application in solving problems in Physics, Mathematics and Chemistry.This review volume, part of the IMS Lecture Notes Series, is a collection of contributions from the September 2019 Workshop on the topic, held in the Institute for Mathematical Sciences, National University of Singapore.With contributions from prominent Mathematicians, Physicists, and Chemists, the volume is a blend of comprehensive review articles on the Mathematical and the Physicochemical aspects of DFT and shorter contributions on particular themes, including numerical implementations.The book will be a useful reference for advanced undergraduate and postgraduate students as well as researchers.

Book Unbounded Functionals in the Calculus of Variations

Download or read book Unbounded Functionals in the Calculus of Variations written by Luciano Carbone and published by CRC Press. This book was released on 2019-06-13 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few decades, research in elastic-plastic torsion theory, electrostatic screening, and rubber-like nonlinear elastomers has pointed the way to some interesting new classes of minimum problems for energy functionals of the calculus of variations. This advanced-level monograph addresses these issues by developing the framework of a gener

Book Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Download or read book Lyapunov Functionals and Stability of Stochastic Functional Differential Equations written by Leonid Shaikhet and published by Springer Science & Business Media. This book was released on 2013-03-29 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.

Book Tractability of Multivariate Problems  Standard information for functionals

Download or read book Tractability of Multivariate Problems Standard information for functionals written by Erich Novak and published by European Mathematical Society. This book was released on 2008 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. The second volume deals with algorithms using standard information consisting of function values for the approximation of linear and selected nonlinear functionals. An important example is numerical multivariate integration. The proof techniques used in volumes I and II are quite different. It is especially hard to establish meaningful lower error bounds for the approximation of functionals by using finitely many function values. Here, the concept of decomposable reproducing kernels is helpful, allowing it to find matching lower and upper error bounds for some linear functionals. It is then possible to conclude tractability results from such error bounds. Tractability results, even for linear functionals, are very rich in variety. There are infinite-dimensional Hilbert spaces for which the approximation with an arbitrarily small error of all linear functionals requires only one function value. There are Hilbert spaces for which all nontrivial linear functionals suffer from the curse of dimensionality. This holds for unweighted spaces, where the role of all variables and groups of variables is the same. For weighted spaces one can monitor the role of all variables and groups of variables. Necessary and sufficient conditions on the decay of the weights are given to obtain various notions of tractability. The text contains extensive chapters on discrepancy and integration, decomposable kernels and lower bounds, the Smolyak/sparse grid algorithms, lattice rules and the CBC (component-by-component) algorithms. This is done in various settings. Path integration and quantum computation are also discussed. This volume is of interest to researchers working in computational mathematics, especially in approximation of high-dimensional problems. It is also well suited for graduate courses and seminars. There are 61 open problems listed to stimulate future research in tractability.

Book Local Properties of Distributions of Stochastic Functionals

Download or read book Local Properties of Distributions of Stochastic Functionals written by Yu. A. Davydov, M. A. Lifshits, andN. V. Smorodina and published by American Mathematical Soc.. This book was released on 1998-02-10 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the distributions of functionals defined on the sample paths of stochastic processes. It contains systematic exposition and applications of three general research methods developed by the authors. (i) The method of stratifications is used to study the problem of absolute continuity of distribution for different classes of functionals under very mild smoothness assumptions. It can be used also for evaluation of the distribution density of the functional. (ii) The method of differential operators is based on the abstract formalism of differential calculus and proves to be a powerful tool for the investigation of the smoothness properties of the distributions. (iii) The superstructure method, which is a later modification of the method of stratifications, is used to derive strong limit theorems (in the variation metric) for the distributions of stochastic functionals under weak convergence of the processes. Various application examples concern the functionals of Gaussian, Poisson and diffusion processes as well as partial sum processes from the Donsker-Prokhorov scheme. The research methods and basic results in this book are presented here in monograph form for the first time. The text would be suitable for a graduate course in the theory of stochastic processes and related topics.

Book Recursion on the Countable Functionals

Download or read book Recursion on the Countable Functionals written by D. Normann and published by Springer. This book was released on 2006-12-08 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Density Matrices and Density Functionals

Download or read book Density Matrices and Density Functionals written by R.M. Erdahl and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE COLEMAN SYMPOSIUM This collection of papers is dedicated to Albert John Coleman for his enthusiastic devotion to teaching and research and his many scientific accomplishments. John was born in Toronto on May 20, 1918 and 21 years later graduated from the University of Toronto in mathematics. Along the way he teamed up with Irving Kaplansky and Nathan Mendelson to win the first William Lowell Putnam Mathematical Competition in 1938. He earned his M.A. at Princeton in 1942 and then his Ph.D. at Toronto in 1943 in relativistic quantum mechanics under the direction of Leopold Infeld. During this period he was secretary of the Student Christian Movement in Toronto. Later, in 1945, he became traveling secretary of the World's Student Christian Federation in Geneva and in this capacity visited some 100 universities in 20 countries in the next four years. He spent the 50's as a member of the faculty at the University of Toronto and for 20 years, starting in 1960, he served as Dupuis Professor of Mathematics and Head of the Department at Queen's University. Since 1983 he has been Professor Emeritus at Queen's.

Book Interacting Boson Model from Energy Density Functionals

Download or read book Interacting Boson Model from Energy Density Functionals written by Kosuke Nomura and published by Springer Science & Business Media. This book was released on 2013-02-11 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes a novel and robust way of deriving a Hamiltonian of the interacting boson model based on microscopic nuclear energy density functional theory. Based on the fact that the multi-nucleon induced surface deformation of finite nucleus can be simulated by effective boson degrees of freedom, observables in the intrinsic frame, obtained from self-consistent mean-field method with a microscopic energy density functional, are mapped onto the boson analog. Thereby, the excitation spectra and the transition rates for the relevant collective states having good symmetry quantum numbers are calculated by the subsequent diagonalization of the mapped boson Hamiltonian. Because the density functional approach gives an accurate global description of nuclear bulk properties, the interacting boson model is derived for various situations of nuclear shape phenomena, including those of the exotic nuclei investigated at rare-isotope beam facilities around the world. This work provides, for the first time, crucial pieces of information about how the interacting boson model is justified and derived from nucleon degrees of freedom in a comprehensive manner.

Book Extrema of Nonlocal Functionals and Boundary Value Problems for Functional Differential Equations

Download or read book Extrema of Nonlocal Functionals and Boundary Value Problems for Functional Differential Equations written by Georgiĭ Aleksandrovich Kamenskiĭ and published by Nova Publishers. This book was released on 2007 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The non-local functional is an integral with the integrand depending on the unknown function at different values of the argument. These types of functionals have different applications in physics, engineering and sciences. The Euler type equations that arise as necessary conditions of extrema of non-local functionals are the functional differential equations. The book is dedicated to systematic study of variational calculus for non-local functionals and to theory of boundary value problems for functional differential equations. There are described different necessary and some sufficient conditions for extrema of non-local functionals. Theorems of existence and uniqueness of solutions to many kinds of boundary value problems for functional differential equations are proved. The spaces of solutions to these problems are, as a rule, Sobolev spaces and it is not often possible to apply the analytical methods for solution of these problems. Therefore it is important to have approximate methods for their solution. Different approximate methods of solution of boundary value problems for functional differential equations and direct methods of variational calculus for non-local functionals are described in the book. The non-local functional is an integral with the integrand depending on the unknown function at different values of the argument. These types of functionals have different applications in physics, engineering and sciences. The Euler type equations that arise as necessary conditions of extrema of non-local functionals are the functional differential equations. The book is dedicated to systematic study of variational calculus for non-local functionals and to theory of boundary value problems for functional differential equations. There are described different necessary and some sufficient conditions for extrema of non-local functionals. Theorems of existence and uniqueness of solutions to many kinds of boundary value problems for functional differential equations are proved. The spaces of solutions to these problems are, as a rule, Sobolev spaces and it is not often possible to apply the analytical methods for solution of these problems. Therefore it is important to have approximate methods for their solution. Different approximate methods of solution of boundary value problems for functional differential equations and direct methods of variational calculus for non-local functionals are described in the book.

Book On Integral Functionals with a Variable Domain of Integration

Download or read book On Integral Functionals with a Variable Domain of Integration written by Ivan Ilʹich Danili͡uk and published by American Mathematical Soc.. This book was released on 1976 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses functions, functionals and their boundaries.

Book Introductory Functional Analysis with Applications

Download or read book Introductory Functional Analysis with Applications written by Erwin Kreyszig and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry